95 resultados para HfO2 thin film
Resumo:
Large amplitude local density fluctuations in a thin superfluid He film is considered. It is shown that these large amplitude fluctuations travel and behave like "quasi-solitons" under collision, even when the full nonlinearity arising from the Van der Waals potential is taken into account.
Resumo:
In the present work, we report the third order nonlinear optical properties of ZnO thin films deposited using self assembly, sol gel process as well as pulsed laser ablation by z scan technique. ZnO thin films clearly exhibit a negative nonlinear index of refraction at 532 nm and the observed nonlinear refraction is attributed to two photon absorption followed by free carrier absorption. Although the absolute nonlinear values for these films are comparable, there is a change in the sign of the absorptive nonlinearity of the films. The films developed by dip coating and pulsed laser ablation exhibit reverse saturable absorption whereas the self assembled film exhibits saturable absorption. These different nonlinear characteristics in the self assembled films can be mainly attributed to the saturation of linear absorption of the ZnO defect states.
Resumo:
Due to the great versatility of the properties of polymer thin films, special interest has been taken in recent years on their preparation and electrical properties. The present thesis is entirely devoted to the study of the formation, structure and electrical properties of plasma» polymerised polyacrylonitrile (PAN) thin films. Eventhough the studies are confined to a single polymer film, the results in general are applicable to similar polar polymer films.
Resumo:
Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au9+ beam with fluences ranging from 3 1011 to 3 1013 ions/cm2. The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion
Resumo:
Effect of varying spray rate on the structure and optoelectronic properties of spray pyrolysed ZnO film is analysed. ZnO films were characterised using different techniques such as X-ray diffraction (XRD), photoluminescence, electrical resistivity measurement, and optical absorption. The XRD analysis proved that, with the increase in spray rate, orientation of the grains changed from (1 0 1) plane to (0 0 2) plane. The films exhibited luminescence in two regions—one was the ‘near band-edge’ (NBE) (∼380 nm) emission and the other one was the ‘blue-green emission’ (∼503 nm). Intensity of the blue-green emission decreased after orientation of grains shifted to (0 0 2) plane. Scanning electron microscope (SEM) analysis of the films asserts that spray rate has major role in improving the crystallographic properties of the films. Moreover resistivity of the films could be lowered to 2.4×10−2 cm without any doping or post-deposition annealing