53 resultados para Superconducting resonators
Resumo:
In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, we have investigated two major types of wide band planar antennas: Monopole and Slot. Four novel compact broadband antennas, suitable for poratble applications, are designed and characterized, namely 1. Elliptical monopole 2. Inverted cone monopole 3. Koch fractal slot 4. Wide band slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and time-domain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated.
Resumo:
Spectroscopic studies of laser -induced plasma from a high-temperature superconducting material, viz., YBa2Cu3O7 (YBCO), have been carried out. Electron temperature and electron density measurements were made from spectral data. The Stark broad ening of emission lines was used to determine the electron density, and the ratio of line in tensities was exploited for the determination of electron temperature. An initial electron temperature of 2.35 eV and electron density of 2.5 3 1017 cm2 3 were observed. The dependence on electron temperature and density on different experimental parameters such as distance from the target, delay time after the in itiation of the plasm a, and laser irradiance is also discussed in detail. Index Headings: Laser -plasma spectroscopy; Plasma diagnostics; Emission spectroscop y; YBa2Cu3O7.
Resumo:
The dynamics of diffusion of electrons and ions from the laser-produced plasma from a multielement superconducting material, namely YBa2Cu3O7, using a Q-switched Nd:YAG laser is investigated by time-resolved emission-spectroscopic techniques at various laser irradiances. It is observed that beyond a laser irradiance of 2.6 \xC3\x97 1011 W cm-2, the ejected plume collectively drifts away from the target with a sharp increase in velocity to 1.25 \xC3\x97 106 cm s-1, which is twice its velocity observed at lower laser irradiances. This sudden drift apparently occurs as a result of the formation of a charged double layer at the external plume boundary. This diffusion is collective, that is, the electrons and ions inside the plume diffuse together simultaneously and hence it is similar to the ambipolar diffusion of charged particles in a discharge plasma
Resumo:
In order to characterise the laser ablation process from high-Tc superconductors, the time evolution of plasma produced by a Q-switching Nd:YAG laser from a GdBa2Cu3O7 superconducting sample has been studied using spectroscopic and ion-probe techniques. It has been observed that there is a fairly large delay for the onset of the emission from oxide species in comparison with those from atoms and ions of the constituent elements present in the plasma. Faster decay occurs for emission from oxides and ions compared with that from neutral atoms. These observations support the view that oxides are not directly produced from the target, but are formed by the recombination process while the plasma cools down. Plasma parameters such as temperature and velocity are also evaluated.
Resumo:
The spectroscopic analysis of the emission from the plasma produced by irradiating a highT c superconducting GdBa2Cu3O7 target with a high power Nd:YAG laser beam shows the existence of the bands from different oxides in addition to the lines from neutrals and ions of the constituent elements. The spectral emissions by oxide species in laser-induced plasma show considerable time delays as compared to those from neutral and ionic species. Recombination processes taking place during the cooling of the hot plasma, rather than the plasma expansion velocities, have been found to be responsible for the observed time delays in this case. The decays of emission intensities from various species are found to be non-exponential.
Resumo:
Laser induced plasma emission spectra from highT c superconducting samples of YBa2Cu3O7 and GdBa2Cu3O7 obtained with 1.06µm radiation from a Q switched Nd:YAG laser beam has been analysed. The results clearly show the presence of diatomic oxides in addition to ionized species of the constituent metals in the plasma thus produced.
Resumo:
We have numerically studied the behavior of a two-mode Nd-YAG laser with an intracavity KTP crystal. It is found that when the parameter, which is a measure of the relative orientations of the KTP crystal with respect to the Nd-YAG crystal, is varied continuously, the output intensity fluctuations change from chaotic to stable behavior through a sequence of reverse period doubling bifurcations. The graph of the intensity in the X-polarized mode against that in the Y-polarized mode shows a complex pattern in the chaotic regime. The Lyapunov exponent is calculated for the chaotic and periodic regions.
Resumo:
Laser‐induced damage and ablation thresholds of bulk superconducting samples of Bi2(SrCa)xCu3Oy(x=2, 2.2, 2.6, 2.8, 3) and Bi1.6 (Pb)xSr2Ca2Cu3 Oy (x=0, 0.1, 0.2, 0.3, 0.4) for irradiation with a 1.06 μm beam from a Nd‐YAG laser have been determined as a function of x by the pulsed photothermal deflection technique. The threshold values of power density for ablation as well as damage are found to increase with increasing values of x in both systems while in the Pb‐doped system the threshold values decrease above a specific value of x, coinciding with the point at which the Tc also begins to fall.
Resumo:
A simple experimental set-up is described to measure the electromagnetic shielding property of high Tc superconducting samples. Measurements were performed using HTSC materials in the form of laser ablated thin films, powders and sintered pellets. Samples used were Gd-123 in pure and doped form as well as a few Bi-based superconducting ceramics. For comparison, similar measurements were carried out on metals like aluminium, copper and μ metal. Very effective shielding was observed for HTSC materials compared to the conventional materials mentioned above. However it also depended on the sample types and poor shielding was observed for powdered HTSC material in comparison to thin films prepared by laser ablation.
Resumo:
The objective of the present work is to study the effect of rare-earth (RE) doping on the superconducting properties of (Bi,Pb)-2212 system and to develop novel superconductors in the system with improved properties, especially, the self- and in-field critical current densities so as to use them for practical applications. This dissertation describes a range of findings in Bi-based superconductor using the cationic substitution of rare earth (RE) elements. Most of the experiments reported here take advantage of the difference in the valency and ionic radii of dopant and doping site.
Resumo:
This thesis presents the microwave dielectric properties of two novel dielectric resonator materials with the composition Ca(Ca1/4Nb2/4Ti1/4)O3 and Ca(Ca1/4Ta2/4Ti1/4)O3 ceramics and their application in the fabrication of wideband antennas. The microwave dielectric properties of the ceramics were tailored by several techniques such as doping, glass addition and solid solution formations in the complex perovskite A and B-sites with suitable substitutions. Among the wide variety of DRs developed, ceramic resonators with optimum properties were identified to fabricate broadband dielectric resonator loaded microstrip patch antennas. Furthermore, wideband, high permittivity dielectric resonator antennas were fabricated and explored the possibility of tuning their characteristics by modifying the feed line geometries.
Resumo:
Bio-compatible magnetic fluids having high saturation magnetization find immense applications in various biomedical fields. Aqueous ferrofluids of superparamagnetic iron oxide nanoparticles with narrow size distribution, high shelf life and good stability is realized by controlled chemical co-precipitation process. The crystal structure is verified by X-ray diffraction technique. Particle sizes are evaluated by employing Transmission electron microscopy. Room temperature and low-temperature magnetic measurements were carried out with Superconducting Quantum Interference Device. The fluid exhibits good magnetic response even at very high dilution (6.28 mg/cc). This is an advantage for biomedical applications, since only a small amount of iron is to be metabolised by body organs. Magnetic field induced transmission measurements carried out at photon energy of diode laser (670 nm) exhibited excellent linear dichroism. Based on the structural and magnetic measurements, the power loss for the magnetic nanoparticles under study is evaluated over a range of radiofrequencies.
Resumo:
A novel cavity perturbation technique using coaxial cavity resonators for the measurement of complex permittivity of liquids is presented. The method employs two types of resonators (Resonator I and Resonator II). Resonator I operates in the frequency range 600 MHz-7 GHz and resonator II operates in the frequency range 4 GHz-14 GHz. The introduction of the capillary tube filled with the sample liquid into the coaxial resonator causes shifts in the resonance frequency and loaded Q-factor of the resonator. The shifts in the resonance frequency and loaded Q-factor are used to determine the real and imaginary parts of the complex permittivity of the sample liquid, respectively. Using this technique, the dielectric parameters of water and nitrobenzene are measured. The results are compared with those obtained using other standard methods. The sources of errors are analyzed.
Resumo:
In the medical field, microwaves play a larger role for treatment than diagnosis. For the detection of diseases by microwave methods, it is essential to know the dielectric properties of biological materials. For the present study, a cavity perturbation technique was employed to determine the dielectric properties of these materials. Rectangular cavity resonators were used to measure the complex permittivity of human bile, bile stones, gastric juice and saliva. The measurements were carried out in the S and J bands. It is observed that normal and infected bile have different dielectric constant and loss tangent. Dielectric constant of infected bile and gastric juice varies from patient to patient. Detection and extraction of bile stone with possible method of treatment is also discussed.