36 resultados para Heterocyclic Amines
Resumo:
This thesis deals with the synthesis, characterisation and catalytic activity studies of some new transition metal complexes of the Schiff bases, derived from quinoxaline—2—carboxaldehyde. The model complexes derived from specially designed and synthesised Schiff bases help us to understand the chemistry of biological systems. Schiff bases derived from heterocyclic aldehydes like quinoxaline-2-carboxaldehyde provide great structural diversity during complexation. The Schiff bases synthesised in the present study ' are quinoxaline—2—carboxa.lidene-2-aminophenol (QAP). quinoxaline—2carboxaldehyde semicarbazone (QSC), quinoxaline-2—carboxalidene—o— phenylenediamine (QOD) and quinoxaline-2-carboxalidene-2-furfurylamine (QFA). The elucidation of the structure of these complexes is done using conductance, magnetic susceptibility measurements. infrared, UV—Vis and EPR spectral studies.
Resumo:
Multi-component reactions are effective in building complex molecules in a single step in a minimum amount of time and with facile isolation procedures; they have high economy1–7 and thus have become a powerful synthetic strategy in recent years.8–10 The multicomponent protocols are even more attractive when carried out in aqueous medium. Water offers several benefits, including control over exothermicity, and the isolation of products can be carried out by single phase separation technique. Pyranopyrazoles are a biologically important class of heterocyclic compounds and in particular dihydropyrano[2,3-c]pyrazoles play an essential role in promoting biological activity and represent an interesting template in medicinal chemistry. Heterocyclic compounds bearing the 4-H pyran unit have received much attention in recent years as they constitute important precursors for promising drugs.11–13 Pyrano[2,3-c]pyrazoles exhibit analgesic,14 anti-cancer,15 anti-microbial and anti-inflammatory16 activity. Furthermore dihydropyrano[2,3-c]pyrazoles show molluscidal activity17,18 and are used in a screening kit for Chk 1 kinase inhibitor activity.19,20 They also find applications as pharmaceutical ingredients and bio-degradable agrochemicals.21–29 Junek and Aigner30 first reported the synthesis of pyrano[2,3-c]pyrazole derivatives from 3-methyl-1-phenylpyrazolin-5-one and tetracyanoethylene in the presence of triethylamine. Subsequently, a number of synthetic approaches such as the use of triethylamine,31 piperazine,32 piperidine,33 N-methylmorpholine in ethanol,34 microwave irradiation,35,36 solvent-free conditions,37–39 cyclodextrins (CDs),40 different bases in water,41 γ -alumina,42 and l-proline43 have been reported for the synthesis of 6-amino-4-alkyl/aryl-3-methyl- 2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles. Recently, tetraethylammonium bromide (TEABr) has emerged as mild, water-tolerant, eco-friendly and inexpensive catalyst. To the best of our knowledge, quaternary ammonium salts, more specifically TEABr, have notbeen used as catalysts for the synthesis of pyrano[2,3-c]pyrazoles, and we decided to investigate the application of TEABr as a catalyst for the synthesis of a series of pyrazole-fused pyran derivatives via multi-component reactions
Resumo:
The ability of aroylhydrazones to bind with transition metals is a developing area of research interest and the coordinating properties of hydrazones can be tuned by the appropriate choice of parent aldehyde or ketone and the hydrazide. So in the present work we selected four different aroylhydrazones as principal ligands. Introduction of heterocyclic bases like 1,10-phenanthroline, 2,2′-bipyridine, 3-picoline and pyridine leads to the syntheses of mixed ligand metal chelates which can cause different bonding modes, spectral properties and geometries in coordination compounds. The importance of aroylhydrazones and their complexes in various fields and their interesting coordinating properties stimulate our interest in the investigation of transition metal chelates with four different aroylhydrazones. The aroylhydrazones selected are 4-benzyloxy-2-hydroxybenzaldehyde-4-nitrobenzoylhydrazone dimethylformamide monosolvate, 5-bromo-2-hydroxy-3-methoxybenzaldehyde nicotinoylhydrazone dihydrate methanol monosolvate, 4-diethylamino-2- hydroxybenzaldehyde nicotinoylhydrazone monohydrate and 2-benzoylpyridine- 4-nitrobenzoylhydrazone. The selection of 4-benzyloxy-2-hydroxybenzaldehyde- 4-nitrobenzoylhydrazone was based on the idea of developing ligands having D-π-A general structure, so that the proligand and metal complexes exhibit NLO activity. Hence it is interesting to explore the coordinating capabilities of the synthesized hydrazones and to study the NLO activity of hydrazones and some of the metal complexes.
Resumo:
Carbon-carbon and carbon-heteroatom bond formations constitute the central events in organic synthesis. In view of this, much of the research in organic synthesis has been focused on devising novel and efficient methods for such bond constructions. In general, polar, pericyclic and radical methodologies are employed for this purpose. The polar and radical reactions proceed via reactive intermediates such as carbanions, enols/enolates, enamines, carbocations, radical cations, radical anions, carbenes, zwitterions etc. In recent years, there has been enormous interest in the chemistry of zwitterionic species largely from the standpoint of their applications in multicomponent reactions (MCRs) and organocatalytic reactions. Zwitterions formed by the addition of nucleophiles to electrophilic π-systems such as acetylenic esters and azoesters have been the subject of extensive investigations; their synthetic utility, however, remained largely unexplored. Investigations in a number of laboratories, including our own, have shown that zwitterions of the type mentioned above on reaction with electrophiles give rise to carbo- and heterocyclic products by 1,3- or 1,4-dipolar cycloadditions. Recently, allenoates, another class of active π-systems were introduced to this field. Against this background, a systematic investigation of the reactions of various zwitterions derived from allenoates with different electrophiles especially 1,2-diones, were carried out. The results of these studies are embodied in the thesis entitled “Novel Synthesis of Carbocycles and Heterocycles Employing Zwitterions Derived from Allenic Esters”.
Resumo:
Nitrones or azomethine-N-oxides are important precursors for the synthesis of several heterocyclic systems. They belong to the allyl anion type 1,3-dipoles and possess unique structural features which make them extraordinarily useful synthons. They behave as 1,3-dipoles in 1,3-dipolar cycloaddition reactions and as electrophiles in reactions with organometallic reagents. These are the two basic reactions given by nitrones. Nitrones also act as ‘spin traps’ in which they react with short-lived radicals to furnish stable nitroxide radicals which can be detected and identified by electron paramagnetic resonance (EPR) spectroscopy. Recently SmI2 catalysed reductive cross-coupling reactions of nitrones have gained significant interest in which the reactions are initiated by single electron transfer (SET) to nitrones. Apart from these reactions, nitrones are also known to participate in reactions which are initiated by the nucleophilic attack of nitrone-oxygen. In our group, we have also explored the nucleophilic character of nitrones through various reactions. The results obtained enabled us to develop a novel two-step one-pot strategy for quinolines and indoles - the heterocycles renowned for their pharmacological applications, from nitrones and electron deficient acetylenes. Using dibenzoylacetylene and phenylbenzoylacetylene as dipolarophiles, we could introduce a desired functional group at a predetermined position of the quinolines or indoles to be synthesised. In this context, the thesis entitled “NUCLEOPHILIC ADDITION OF NITRONES TO ELECTRON DEFICIENT ACETYLENES AND RELATED STUDIES” portrays our attempt to expand the scope of our x novel synthetic protocol using ester functionalised acetylenes: dimethyl acetylenedicarboxylate (DMAD) and methyl propiolate. The thesis is organised in to five chapters. The first chapter briefly describes the different classes of reactions that nitrone functionality can tolerate. The research problem is defined at the end of this chapter. The second chapter describes the synthesis of different nitrones used for the present study. The optimisation and expansion of scope of the novel strategy towards quinoline synthesis is discussed in the third chapter. The fourth chapter portrays the synthesis of indole-3-carboxylates using the novel strategy. In the fifth chapter, the reaction of N-(2,6-dimethylphenyl) and N-(2,4,6-trimethylphenyl)nitrones are discussed. Here we also discuss the mechanistic reinvestigation of Baldwin’s proposal in the isoxazoline-oxazoline rearrangement. The major outcome of the work is given at the end of the thesis. The structural formulae, schemes, tables and figures are numbered chapter-wise since each chapter of the thesis is organized as an independent unit. All new compounds (except two compounds reported in fourth chapter) are fully characterised on the basis of spectral and analytical data and single crystal X-ray analysis on representative examples. Relevant references are included at the end of individual chapters.
Resumo:
The work embodied in this thesis was carried out by the author in the Department of Applied Chemistry, CUSAT, Kochi, during the period 2009-2012. The thesis is an introduction to our attempts to evaluate the coordination behavior of some compounds of our interest. The biological activities of semicarbazones and their metal complexes have been an active area of research during the past years because of their significant role in naturally occurring biological systems. Tridentate NNO and ONO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are wellauthenticated compounds in this field and their synthesis, crystal structures and spectral studies are well desirable. Hence, we decided to develop a research program aimed at the syntheses, crystal structures and spectral studies of new N4- phenylsemicarbazones derived from 2-formylpyridine and 3-ethoxysalicylaldehyde and their transition metal complexes and new transition metal complexes of 2- benzoylpyridine-N4-phenylsemicarbazone. In addition to various physicochemical methods of analysis, single crystal X-ray diffraction studies were also used for the characterization of the complexes.