41 resultados para Di-2-pyridylketone Schiff-base
Resumo:
A new PVC membrane sensor, which is highly selective towards Ni (II) ions, has been developed using a thiophene-derivative Schiff base as the ionophore. The best performance was exhibited by the membrane having the composition percentage ratio of 5:3:61:31 (ionophore:NaTPB:DBP:PVC) (w=w), where NaTPB is the anion excluder, sodium tetraphenylborate and DBP is the plasticizing agent (dibutyl phthalate). The membrane exhibited a good Nernstian response for nickel ions over the concentration range of 1.0 10 1– 5.0 10 6M (limit of detection is 1.8 10 6 M) with a slope of 29.5 1.0mV per decade of activity. It has a fast response time of<20 s and can be used for a period of 4 months with good reproducibility. The sensor is suitable for use in aqueous solutions of a wide pH range of 3.2–7.9. The sensor shows high selectivity to nickel ions over a large number of mono-, bi- and trivalent cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for direct determination of nickel content in real samples – wastewater samples from electroplating industries and Indian chocolates.
Resumo:
A new PVC membrane sensor, which is highly selective towards Ni (II) ions, has been developed using a thiophene-derivative Schiff base as the ionophore. The best performance was exhibited by the membrane having the composition percentage ratio of 5:3:61:31 (ionophore:NaTPB:DBP:PVC) (w=w), where NaTPB is the anion excluder, sodium tetraphenylborate and DBP is the plasticizing agent (dibutyl phthalate). The membrane exhibited a good Nernstian response for nickel ions over the concentration range of 1.0 10 1– 5.0 10 6M (limit of detection is 1.8 10 6 M) with a slope of 29.5 1.0mV per decade of activity. It has a fast response time of<20 s and can be used for a period of 4 months with good reproducibility. The sensor is suitable for use in aqueous solutions of a wide pH range of 3.2–7.9. The sensor shows high selectivity to nickel ions over a large number of mono-, bi- and trivalent cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for direct determination of nickel content in real samples – wastewater samples from electroplating industries and Indian chocolates.
Resumo:
new PVC membrane ion selective electrode which is highly selective towards Ni(II) ions was constructed using a Schiff base containing a binaphthyl moiety as the ionophore. The sensor exhibited a good Nernstian response for nickel ions over the concentration range 1.0 × 10–1 – 5.0 × 10–6 M with a lower limit of detection of 1.3 × 10–6 M. It has a fast response time and can be used for a period of 4 months with a good reproducibility. The sensor is suitable for use in aqueous solutions in a wide pH range of 3.6 – 7.4 and works satisfactorily in the presence of 25% (v/v) methanol or ethanol. The sensor shows high selectivity to nickel ions over a wide variety of cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for the direct determination of nickel content in real samples: effluent samples, chocolates and hydrogenated oils.
Resumo:
The present work is concentrated on the studies of two novel semicarbazones, di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL1) and quinoline-2-carboxaldehyde-N4-phenyl-3-semicarbazone (HL2). The compositions of these semicarbazones were determined by the CHN analyses. For the characterization of these compounds we have used IR, UV and NMR spectral studies. The molecular structure of quinoline-2-carboxaldehyde-N4-phenyl-3- semicarbazone (HL2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Zn(II), Cd(II), Cu(II), Ni(II), Co(II) and Mn(II) complexes of these semicarbazones, HL1 and HL2. These complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some Zn(II) and Cd(II) compounds suitable for X-ray diffraction studies. For other complexes we could not isolate single crystals of good quality for single crystal X-ray diffraction studies.
Resumo:
The work presented in this thesis is mainly centered on the synthesis and characterization of some encapsulated transition metal complexes and the catalytic activity of the synthesized complexes in certain organic reactions.thesis deals with the catalytic activity of ruthenium-exchanged zeolite and the zeolite encapsulated complexes of SSC, SOD, SPD, AA, ABA, DMG, PCO, PCP, CPO and CPP in the hydroxylation of phenol using hydrogen peroxide. The products were analyzed with a GC to determine the percentage conversion and the chromatograms indicate the presence of different products like hydroquinone, catechol,benzoquinone, benzophenone etc. The major product formed is hydroquinone. From the screening studies, RuYSSC was found to be the most effective catalyst for phenol hydroxylation with 94.4% conversion and 76% hydroquinone selectivity. The influence of different factors like reaction time, temperature, amount of catalyst, effect of various solvents and oxidant to substrate ratio in the catalytic activity were studied in order to find out the optimum conditions for the hydroxylation reaction. The influence of time on the percentage conversion of phenol was studied by conducting the reactions for different durations varying from one hour to four hours. There is an induction period for all the complexes and the length of the induction period depends on the nature of the active components. Though the conversion of phenol and selectivity for hydroquinone. increases with time, the amount of benzoquinone formed decreases with time. This is probably due to the decomposition of benzoquinone formed during the initial stages of the reaction into other degradation products like benzophenones. The effect of temperature was studied by carrying out the reaction at three different temperatures, 30°C, 50°C and 70°C. Reactions carried at temperatures higher than 70°C result either in the decomposition of the products or in the formation of tarry products. Activity increased with increase in the amount of the catalyst up to a certain level. However further increase in the weight of the catalyst did not have any noticeable effect on the percentage conversion. The catalytic studies indicate that the oxidation reaction increases with increase in the volume of hydrogen peroxide till a certain volume. But further increase in the volume of H202 is detrimental as some dark mass is obtained after four hours of reaction. The catalytic activity is largely dependent on the nature of the solvent and maximum percentage conversion occurred when the solvent used is water. The intactness of the complexes within the zeolite cages enhances their possibility of recycling and the activities of the recycled catalysts show only a slight decrease when compared to the fresh samples .
Resumo:
Thiosemicarbazones have recently attracted considerable attention due to their ability to form tridentate chelates with transition metal ions through either two nitrogen and sulfur atoms, N–N–S or oxygen, nitrogen and sulfur atoms, O–N–S. Considerable interest in thiosemicarbazones and their transition metal complexes has also grown in the areas of biology and chemistry due to biological activities such as antitumoral, fungicidal, bactericidal, antiviral and nonlinear optical properties. They have been used for metal analyses, for device applications related to telecommunications, optical computing, storage and information processing.The versatile applications of metal complexes of thiosemicarbazones in various fields prompted us to synthesize the tridentate NNS-donor thiosemicarbazones and their metal complexes. As a part of our studies on transition metal complexes with these ligands, the researcher undertook the current work with the following objectives. 1. To synthesize and physico-chemically characterize the following thiosemicarbazone ligands: a. Di-2-pyridyl ketone-N(4)-methyl thiosemicarbazone (HDpyMeTsc) b. Di-2-pyridyl ketone-N(4)-ethyl thiosemicarbazone (HDpyETsc) 2. To synthesize oxovanadium(IV), manganese(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes using the synthesized thiosemicarbazones as principal ligands and some anionic coligands. 3. To study the coordination modes of the ligands in metal complexes by using different physicochemical methods like partial elemental analysis, thermogravimetry and by different spectroscopic techniques. 4. To establish the structure of compounds by single crystal XRD studies
Resumo:
An unusual copper(II) complex [Cu(L1a)2Cl2] CH3OH H2O H3O+Cl (1a) was isolated from a solution of a novel tricopper(II) complex [Cu3(HL1)Cl2]Cl3 2H2O (1) in methanol, where L1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex 1a was followed by time-dependant monitoring of the UV–visible spectra, which reveals degradation of ligand backbone as intensity loss of bands corresponding to O?Cu(II) charge transfer
Resumo:
Four hydrazone ligands: 2-benzoylpyridine benzoyl hydrazone (HBPB), di-2-pyridyl ketone nicotinoyl hydrazone (HDKN), quinoline-2-carbaldehyde benzoyl hydrazone (HQCB), and quinoline-2-carbaldehyde nicotinoyl hydrazone (HQCN) and four of their complexes with vanadyl salts have been synthesized and characterized. Single crystals of HBPB and complexes [VO(BPB)(l2-O)]2 (1) and [VO(DKN)(l2-O)]2 ½H2O (2) were isolated and characterized by X-ray crystallography. Each of the complexes exhibits a binuclear structure where two vanadium(V) atoms are bridged by two oxygen atoms to form distorted octahedral structures within cis-N2O4 donor sets. In most complexes, the uninegative anions function as tridentate ligands, coordinating through the pyridyl- and azomethine-nitrogen atoms and enolic oxygen whereas in complex [VO(HQCN)(SO4)]SO4 4H2O (4) the ligand is coordinated in the keto form. Complexes [VO(QCB)( OMe)] 1.5H2O (3) and 4 are found to be EPR active and showed well-resolved axial anisotropy with two sets of eight line pattern
Resumo:
The thesis deals with the synthesis, characterization and catalytic activity studies of supported cobalt(ii), nickel(II) and copper(II) complexes of O-phenylenediamine and Schiff bases derived from 3-hydroxyquinoxaline -2-carboxaldehyde. Zeolite encapsulation and polymer anchoring was employed for supporting the complexes. The characterization techniques proved that the encapsulation as well as polymer supporting has been successfully achieved. The catalytic activity studies revealed that the activities of the simple complexes are improved upon encapsulation. Various characterization techniques are used such as, chemical analysis, EPR, magnetic measurements, FTIR studies, thermal analysis, electronic spectra, XRD, SEM, surface area, and GC.The present study indicated that the that the mechanism of oxidation of catechol and DTBC by hydrogen peroxide is not altered by the change in the coordination sphere around the metal ion due to encapsulation. This fact suggests outer sphere mechanism for the reactions. The catalytic activity by zeolite encapsulated complex was found to be slower than that by the neat complex. The slowing down of the reaction in the zeolite case is probably due to the constraint imposed by the zeolite framework. The rate of DTBC ( 3,5-di-tert-butylchatechol)oxidation was found to be greater than the rate of catechol oxidation. This is obviously due to the presence of electron donating tertiary butyl groups.
Resumo:
This thesis deals with the synthesis, characterisation and catalytic activity studies of some new transition metal complexes of the Schiff bases, derived from quinoxaline—2—carboxaldehyde. The model complexes derived from specially designed and synthesised Schiff bases help us to understand the chemistry of biological systems. Schiff bases derived from heterocyclic aldehydes like quinoxaline-2-carboxaldehyde provide great structural diversity during complexation. The Schiff bases synthesised in the present study ' are quinoxaline—2—carboxa.lidene-2-aminophenol (QAP). quinoxaline—2carboxaldehyde semicarbazone (QSC), quinoxaline-2—carboxalidene—o— phenylenediamine (QOD) and quinoxaline-2-carboxalidene-2-furfurylamine (QFA). The elucidation of the structure of these complexes is done using conductance, magnetic susceptibility measurements. infrared, UV—Vis and EPR spectral studies.