43 resultados para BLENDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are a large number of commercial examples and property advantages of immiscible elastomer blends.73 Blends of natural rubber (NR) and polybutadiene (BR) have shown various advantages including heat stability, improved elasticity and abrasion resistance. Ethylene-propylene-diene-rubber (EPDM) blended with styrene-butadiene rubber (SBR) has shown improvements in ozone and chemical resistance with better compression set properties. Blends of EPDM and nitrile rubber (NBR) have been cited as a compromise for obtaining moderate oil and ozone resistance with improved low temperature properties. Neoprene (CR)/BR blends offer improved low temperature properties and abrasion resistance with better processing characteristics etc. However, in many of the commercial two-phase elastomer blends, segregation of the crosslinking agents, carbon black or antioxidants preferentially into one phase can result in failure to attain optimum properties. Soluble and insoluble compounding ingredients are found to be preferentially concentrated in one phase. The balance of optimum curing of both phases therefore presents a difficult problem. It has been the aim of this study to improve the performance of commercially important elastomer blends such as natural rubber (NR)/styrene-butadiene rubber (SBR) and natural rubber/polybutadiene rubber (BR) by industrially viable procedures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study is undertaken on PVC blends because of their all-round importance-One of the most prominent needs of PVC in application end-use is permanent plasticizationlo. Butadiene-acrylonitrile rubber (NBR) has been utilized as permanent plasticizer for PVC since the 1940s for wire and cable insulation, food contact, and pondliners used for oil containment23'24. Also plasticized PVC has been added to vulcanizable nitrile rubber, to yield improved ozone, thermal ageing, and chemical resistance resulting in applications including fuel hose covers, gaskets, conveyor belt covers, and printing roll covers. This blend is miscible in the range of 23 to 45 per cent acrylonitrile content in the butadiene-acrylqnitrile copolymerzs. The first phase of the study was directed towards modification blends. These blends, in addition to the polymers, require a host of additives like curatives for the NBR phase and stabilizers for the PVC phase26of the existing PVC blends, especially NBR/PVC. The second phase of the study was directed towards the development of novel PVC based blends. Chloroprene rubber (polychloroprene) (CR) is structurally similar to PVC and hence is likely to form successful blends with PVC32.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary aim of this work has been to develop a cost effective process that can be operated at room temperature for developing latex reclaim with superior mechanical properties. With this objective in mind the researcher proposes to study the reclaiming action of four different chemicals on latex products waste. Waste latex products are chosen because it has a higher potential to generate good quality rubber hydrocarbon since all latex products are based on either high quality concentrated latex or creamed latex. Moreover, all latex products are only lightly crosslinked and not masticated and hence not mechanically degraded. The author also proposes to fully explore the possible application of latex reclaim in various fields..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall objective of the present study was to develop a novel and economic reclaiming process that does not adversely affect the quality of rubber and to investigate methods of utilising the reclaim. Since waste latex products represent a potential source of high quality rubber hydrocarbon, it was decided to develop a process based on such latex wastes. The study revealed that latex reclaim could replace raw natural rubber upto about 50 per cent of its weight without any serious deterioration in mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradation is the chemical degradation of materials brought about by the action of naturally occurring microorganisms. Biodegradation is a relatively rapid process under suitable conditions of moisture, temperature and oxygen availability. The logic behind blending biopolymers such as starch with inert polymers like polyethylene is that if the biopolymer component is present in sufficient amount, and if it is removed by microorganisms in the waste disposal environment, then the base inert plastic should slowly degrade and disappear. The present work focuses on the preparation of biodegradable and photodegradable blends based on low density polyethylene incorporating small quantities of ionomers as compatibilizers. The thesis consists of eight chapters. The first chapter presents an introduction to the present research work and literature survey. The details of the materials used and the experimental procedures undertaken for the study are described in the second chapter. Preparation and characterization of low density polyethylene (LDPE)-biopolymer (starch/dextrin) blends are described in the third chapter. The result of investigations on the effect of polyethylene-co-methacrylic acid ionomers on the compatibility of LDPE and starch are reported in chapter 4. Chapter 5 has been divided into two parts. The first part deals with the effect of metal oxides on the photodegradation of LDPE. The second part describes the function of metal stearates on the photodegradation of LDPE. The results of the investigations on the role of various metal oxides as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends are reported in chapter 6. Chapter 7 deals with the results of investigations on the role of various metal stearates as pro-oxidants on the degradation of ionomer compatibilized LDPE-starch blends. The conclusion of the investigations is presented in the last chapter of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic elastomers are a relatively new class of materials which compete with thermoset rubbers in some areas and thermoplastic materials in other areas. The main thrust of the present investigation is a comparative study’ on commercially .available triblock. styrene thermoplastic elastomers and those derived from blends of acrylonitrile-butadiene rubber and poly(vinyl chloride). The styrene—based thermoplastic elastomers are gaining acceptance as a replacement for both natural and synthetic rubber‘ in many‘ applications. TPEs based on blends of elastomers and plastics ix: the fastest growing segment of the broad class of thermoplastic elastomers. Broad applicability and simple technology of production are the attractive features of this class of TPES. NBR/PVC thermoplastic elastomers were selected for this investigation due to the versatility of PVC, its number one position, low cost. ability to Ina compounded into various flexible and rigid form with good physical and chemical and weathering properties etc., which will be passed over to PVC blends especially NBR/PVC blends which are known to form miscible systems

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of this work is to develop an efficient accelerator system for low temperature vulcanization of rubbers. Although xanthates are known to act as accelerators for low temperature vulcanization, a systematic study on the mechanism of vulcanization, the mechanical properties of the vulcanizates at varying temperatures of vulcanization, cure characteristics etc are not reported. Further. xanthate based curing systems are not commonly used because of their chance for premature vulcanization during processing. The proposed study is to develop a novel accelerator system for the low temperature vulcanization of rubbers having enough processing safely. lt is also proposed to develop a method for the prevulcanisation of natural rubber latex at room temperature. As already mentioned the manufacture of rubber products at low temperature will improve its quality and appearance. Also, energy consumption can be reduced by low temperature vulcanization. in addition, low temperature vulcanization will be extremely useful in the area of repair of defective products, since subjecting finished products to high temperatures during the process of repair will adversely affect the quality of the product. Further. room temperature curing accelerator systems will find extensive applications in surface coating industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts have been made to attain satisfactory network structures in each of the phases of a rubber blend by minimising the cure rate imbalance by employing methods such as grafting of accelerators to the slow curing rubber, chemically bonding the crosslinking agents to the rubber in which it has lower solubility, functionalisation of the slow curing rubber, masterbatching of the curing agents to the slow curing rubber etc. Functionalisation of the slow curing constituents of NR/IIR and NR/EIPDM blends is tried using novel reagents as the first part of this study. However, the crux of the present study is a more direct approach to attaining a covulcanized state in NR/IIR and NR/EPDM blends: Precuring the slow curing rubber (IIR or EPDM) to a low level when it can still blend with NR and then to ck) the final curing after blending with NR. TNM3 precuring is also likely to minimise the viscosity mismatch. Since a low level of resmmal crosslink density is likely to be present lJ1 reclaimed rubbers, blending heat resistant reclaimed rubber such as butyl reclaim with NR may also have the same effect of precuring IIR, and then blending with NR. Hence use of IIR reclaim for developing blends with NR is also proposed to be investigated in this study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-density polyethylene, (LDPE) was mixed with two grades of tapioca starch–lowgrade and high-grade. Various compositions were prepared and mechanical and thermal studies performed. The biodegradability of these samples was checked using a culture medium containing Vibrios (an amylase-producing bacteria), which was isolated from a marine benthic environment. The soil burial test and reprocessability of these samples were checked. The studies on biodegradability show that these blends are partially biodegradable. These low-density polyethylene-starch blends are reprocessable without sacrificing much of their mechanical properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-density polyethylene was mixed with dextrin having different particle sizes (100, 200 and 300 mesh). Various compositions were prepared and their mechanical properties were evaluated and thermal studies have been carried out. Biodegradability of these samples has been checked using liquid culture medium containing Vibrios (an amylase producing bacteria), which were isolated from marine benthic environment. Soil burial test was done and reprocessability of these samples was evaluated. The results indicate that the newly prepared blends are reprocessable without sacrificing much of their mechanical properties. The biodegradability tests on these blends indicate that these are partially biodegradable

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expanded polystyrene (EPS) constitutes a considerable part of thermoplastic waste in the environment in terms of volume. In this study, this waste material has been utilized for blending with silica-reinforced natural rubber (NR). The NR/EPS (35/5) blends were prepared by melt mixing in a Brabender Plasticorder. Since NR and EPS are incompatible and immiscible a method has been devised to improve compatibility. For this, EPS and NR were initially grafted with maleic anhydride (MA) using dicumyl peroxide (DCP) to give a graft copolymer. Grafting was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. This grafted blend was subsequently blended with more of NR during mill compounding. Morphological studies using Scanning Electron Microscopy (SEM) showed better dispersion of EPS in the compatibilized blend compared to the noncompatibilized blend. By this technique, the tensile strength, elongation at break, modulus, tear strength, compression set and hardness of the blend were found to be either at par with or better than that of virgin silica filled NR compound. It is also noted that the thermal properties of the blends are equivalent with that of virgin NR. The study establishes the potential of this method for utilising waste EPS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product