47 resultados para plasma production by laser
Resumo:
Use of inert supports have been recommended for SSF in on ar to overcome its inherent problems and efforts are being made to search for newer and better materials to act as inert solid supports lidoo et al, 1982; Zhu et al, 1994).In the present study an attempt is made to produce L-glutaminase, which is industrially and therapeutically impo rtant, from marine bacteria under solid state fermentation using natura.l. inert and mixed substrates with a view to develop an ideal bioprocess for its large scale production.
Resumo:
Strain improvement is one of the major objectives for maximizing the microbial production of industrially significant primary and secondary metabolites. This goal can be achieved by judicious tuning of the organisms by monitoring its growth parameters and optimizing adequate supply of micro and macro nutrients, inducers, pH, temperature and other factors which control fermentation. Though C. rugosa has been under extensive studies for lipases, maximum world production is only 36 units. In fact, in India, enhanced production conditions for lipases have not yet been initiated. C. rugosa has been cultivated in diverse environments like liquid, semi-solid, solid—state and immobilized conditions, though major emphasis is on SmF or suspension culture. Hence the present investigations mainly focused on increasing the yield by adjusting the physico-chemical growth parameters and to characterize the lipase isoforms secreted by C. rugosa in the culture medium. Maximum possible improved methods were investigated to achieve these objectives. Within this under-optimised background, enhancement of lipase production and its characterization were investigated, employing modified liquid, semi-solid, solid—state and immobilized fermentation strategies
Resumo:
Microbial enzymes are in great demand owing to their importance in several industries such as brewing, baking, leather, laundry detergent, dairy. starch processing and textiles besides pharmaceuticals. About 80% of the enzymes produced through fermentation and sold in the industrial scale are hydrolytic enzymes. Due to recognition of new and new applications, an intensive screening of different kinds of enzymes with novel properties, from various microorganisms, is being pursued all over the world. Bacillus sp are largely known to produce a-amylase, among the different groups of microoganisms, at industrial level. They are known to produce both saccharifying and liquefying a-amylases (Fukumoto 1963; walker and Campbell, 1967a). which are distinguishable by their mechanisms of starch degradation by the fact that the saccharifying asamylases produce an increase in reducing power about twice that of the liquefying enzyme (Fukumoto, 1963; Pazur and Okada, 1966). Under this circumstances, the present study was undertaken, with a View to utilise a fast growing B.coagu1ans isolated from soil, for production of thermostable and alkaline oz-amylase under different fermentation processes
Resumo:
This study on halocin production by Natrinema sp.BTSH10 indicate the prospects for intensive research which could lead to discovery of novel halocins which could have far reaching impact in biopharmaceutical industry particularly as anticancer drug. It is also anticipated that further research on this halocin could lead towards development of novel anticancer drug and new era in pharmaceutical biotechnology. There is no doubt that haloarchaea from saltern ponds have immense potential to return novel and valuable drugs and bioactive substances.
Resumo:
Considering the potential of marine environment present study was designed for the screening and isolation of a potential salt tolerant. alkaline and thennotolerant lipase producing bacteria from the costal belts of South India and consequent development of ideal bioprocess for industrial production, purification characterisation and evaluation of the potential of the lipase enzyme for various industrial applications 1. Screening and isolation of a potential lipase producing bacteria. 2. Optimization of various physicochemical factors in Submerged fennentation for the production of alkaline lipase 3. Purification ofthe lipase enzyme 4. Characterisation of the enzyme 5. Evaluation of the enzyme for various industrial applications
Resumo:
Bacillus subtilis CBTK 106, isolated from banana wastes, produced high titres of a-amylase when banana fruit stalk was used as substrate in a solid-state fermentation system. The e¤ects of initial moisture content, particle size, cooking time and temperature, pH, incubation temperature, additional nutrients, inoculum size and incubation period on the production of a- amylase were characterised. A maximum yield of 5 345 000 U mg~1 min~1 was recorded when pretreated banana fruit stalk (autoclaved at 121 ¡C for 60 min) was used as substrate with 70% initial moisture content, 400 lm particle size, an initial pH of 7.0, a temperature of 35 ¡C, and additional nutrients (ammonium sulphate/sodium nitrate at 1.0%, beef extract/peptone at 0.5%, glucose/sucrose/starch/maltose at 0.1% and potassium chloride/sodium chloride at 1.0%) in the medium, with an inoculum-to-substrate ratio of 10% (v/w) for 24 h. The enzyme yield was 2.65-fold higher with banana fruit stalk medium compared to wheat bran
Resumo:
A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.
Resumo:
Prawn waste, a chitinous solid waste of the shell®sh processing industry, was used as a substrate for chitinase production by the marine fungus Beauveria bassiana BTMF S10, in a solid state fermentation (SSF) culture. The process parameters in¯uencing SSF were optimized. A maximum chitinase yield of 248.0 units/g initial dry substrate (U/gIDS) was obtained in a medium containing a 5:1 ratio (w/v) of prawn waste/sea water, 1% (w/w) NaCl, 2.5% (w/w) KH2PO4, 425±600 lm substrate particle size at 27 °C, initial pH 9.5, and after 5 days of incubation. The presence of yeast extract reduced chitinase yield. The results indicate scope for the utilization of shell®sh processing (prawn) waste for the industrial production of chitinase by using solid state fermentation.
Resumo:
Extracellular L-glutaminase production by Beau6eria sp., isolated from marine sediment, was observed during solid state fermentation using polystyrene as an inert support. Maximal enzyme production (49.89 U:ml) occurred at pH 9.0, 27°C, in a seawater based medium supplemented with L-glutamine (0.25% w:v) as substrate and D-glucose (0.5% w:v) as additional carbon source, after 96 h of incubation. Enzyme production was growth associated. Results indicate scope for production of salt tolerant L-glutaminase using this marine fungus
Resumo:
Process parameters influencing e-glutaminase production by marine Vibrio costicola in solid state fermentation (SSF) using polystyrene as an inert support were optimised. Maximal enzyme yield (157 U/g dry substrate) was obtained at 2% (w/w) t:glutamine, 35°C and pH 7.0 after 24 h. Maltose and potassium dihydrogen phosphate at 1% (w/w) concentration enhanced enzyme yield by 23 and 18%, respectively, while nitrogen sources had an inhibitory effect. Leachate with high specific activity for glutaminase (4.2 U/mg protein) and low viscosity (0-966 Ns/m 2) was recovered from the polystyrene SSF system
Resumo:
Polystyrene beads, impregnated with mineral salts/glutamine medium as inert support, were used to produce L-glutaminase from Vibrio costicola by solid-state fermentation. Maximum enzyme yield, 88 U/g substrate, was after 36 h. Glucose at 10 g/kg enhanced the enzyme yield by 66%. The support system allowed glutaminase to be recovered with higher specific activity and lower viscosity than when a wheat-bran system was used
Resumo:
Four species of bacteria which included Pseudomonas fluorescens, Vibrio cho!erae and Vibrio costicola were observed to produce glutaminase both as extracellular and intracellular fractions. Comparatively both the fractions were higher in mineral media supplemented with 1% glutamine than in nutrient broth added with or without glutamine. Extracellular glutaminase production was about 2.6-6.8 times greater than the intracellular production by all the tested strains
Resumo:
A potential fungal strain producing extracellular β-glucosidase enzyme was isolated from sea water and identified as ^ëéÉêJ Öáääìë=ëóÇçïáá BTMFS 55 by a molecular approach based on 28S rDNA sequence homology which showed 93% identity with already reported sequences of ^ëéÉêÖáääìë=ëóÇçïáá in the GenBank. A sequential optimization strategy was used to enhance the production of β-glucosidase under solid state fermentation (SSF) with wheat bran (WB) as the growth medium. The two-level Plackett-Burman (PB) design was implemented to screen medium components that influence β-glucosidase production and among the 11 variables, moisture content, inoculums, and peptone were identified as the most significant factors for β-glucosidase production. The enzyme was purified by (NH4)2SO4 precipitation followed by ion exchange chromatography on DEAE sepharose. The enzyme was a monomeric protein with a molecular weight of ~95 kDa as determined by SDS-PAGE. It was optimally active at pH 5.0 and 50°C. It showed high affinity towards éNPG and enzyme has a hã and sã~ñ of 0.67 mM and 83.3 U/mL, respectively. The enzyme was tolerant to glucose inhibition with a há of 17 mM. Low concentration of alcohols (10%), especially ethanol, could activate the enzyme. A considerable level of ethanol could produce from wheat bran and rice straw after 48 and 24 h, respectively, with the help of p~ÅÅÜ~êçãóÅÉë=ÅÉêÉîáëá~É in presence of cellulase and the purified β-glucosidase of ^ëéÉêÖáääìë=ëóÇçïáá BTMFS 55.
Resumo:
Halobacteria, members of the domain Archaea that live under extremely halophilic conditions, are often considered as dependable source for deriving novel enzymes, novel genes, bioactive compounds and other industrially important molecules. Protein antibiotics have potential for application as preserving agents in food industry, leather industry and in control of infectious bacteria. Halocins are proteinaceous antibiotics synthesized and released into the environment by extreme halophiles, a universal characteristic of halophilic bacteria. Herein, we report the production of halocin (SH10) by an extremely halophilic archeon Natrinema sp. BTSH10 isolated from salt pan of Kanyakumari, Tamilnadu, India and optimization of medium for enhanced production of halocin. It was found that the optimal conditions for maximal halocin production were 42 C, pH 8.0, and 104 h of incubation at 200 rpm with 2% (V/V) inoculum concentration in Zobell’s medium containing 3 M NaCl, Galactose, beef extract, and calcium chloride as additional supplements. Results indicated scope for fermentation production of halocin for probable applications using halophilic archeon Natrinema sp. BTSH10
Resumo:
Polyhydroxybutyrate (PHB) is known to have applications as medical implants and drug delivery carriers and is consequently in high demand. In the present study the possibilities of harnessing potential PHB-producing vibrios from marine sediments as a new source of PHB was investigated since marine environments are underexplored. Screening of polyhydroxyalkanoate (PHA)-producing vibrios from marine sediments was performed using a fluorescent plate assay followed by spectrophotometric analysis of liquid cultures. Out of 828 isolates, Vibrio sp. BTKB33 showed maximum PHA production of 0.21 g/L and PHA content of 193.33 mg/g of CDW. The strain was identified as Vibrio azureus based on phenotypic characterization and partial 16S rDNA sequence analysis. The strain also produced several industrial enzymes: amylase, caseinase, lipase, gelatinase, and DNase. The FTIR analysis of extracted PHA and its comparison with standard PHB indicated that the accumulated PHA is PHB. Bioprocess development studies for enhancing PHA production were carried out under submerged fermentation conditions. Optimal submerged fermentation conditions for enhanced intracellular accumulation of PHA production were found to be 35 °C, pH −7, 1.5 % NaCl concentration, agitation at 120 rpm, 12 h of inoculum age, 2.5 % initial inoculum concentration, and 36 h incubation along with supplementation of magnesium sulphate, glucose, and ammonium chloride. The PHA production after optimization was found to be increased to 0.48 g/L and PHA content to426.88 mg/g of CDW, indicating a 2.28-fold increase in production. Results indicated that V. azureus BTKB33 has potential for industrial production of PHB.