25 resultados para Predictive Modelling
Resumo:
This thesis attempts to investigate the problems associated with such schemes and suggests a software architecture, which is aimed towards achieving a meaningful discovery. Usage of information elements as a modelling base for efficient information discovery in distributed systems is demonstrated with the aid of a novel conceptual entity called infotron. The investigations are focused on distributed systems and their associated problems. The study was directed towards identifying suitable software architecture and incorporating the same in an environment where information growth is phenomenal and a proper mechanism for carrying out information discovery becomes feasible. An empirical study undertaken with the aid of an election database of constituencies distributed geographically, provided the insights required. This is manifested in the Election Counting and Reporting Software (ECRS) System. ECRS system is a software system, which is essentially distributed in nature designed to prepare reports to district administrators about the election counting process and to generate other miscellaneous statutory reports.
Resumo:
In the present study the effect of hot air recirculation is studied with suitable assumptions. It identifies that, the pressure drop across the tile is a dominant parameter which governs the recirculation. The rack suction pressure of the hardware along with the pressure drop across the tile determines the point of recirculation in the cold aisle. The positioning of hardware in the racks play an important role in controlling the recirculation point. The present study is thus helpful in the design of data centre air flow, based on the theory of jets. The air flow can be modelled both quantitatively and qualitatively based on the results
Resumo:
This thesis investigated the potential use of Linear Predictive Coding in speech communication applications. A Modified Block Adaptive Predictive Coder is developed, which reduces the computational burden and complexity without sacrificing the speech quality, as compared to the conventional adaptive predictive coding (APC) system. For this, changes in the evaluation methods have been evolved. This method is as different from the usual APC system in that the difference between the true and the predicted value is not transmitted. This allows the replacement of the high order predictor in the transmitter section of a predictive coding system, by a simple delay unit, which makes the transmitter quite simple. Also, the block length used in the processing of the speech signal is adjusted relative to the pitch period of the signal being processed rather than choosing a constant length as hitherto done by other researchers. The efficiency of the newly proposed coder has been supported with results of computer simulation using real speech data. Three methods for voiced/unvoiced/silent/transition classification have been presented. The first one is based on energy, zerocrossing rate and the periodicity of the waveform. The second method uses normalised correlation coefficient as the main parameter, while the third method utilizes a pitch-dependent correlation factor. The third algorithm which gives the minimum error probability has been chosen in a later chapter to design the modified coder The thesis also presents a comparazive study beh-cm the autocorrelation and the covariance methods used in the evaluaiicn of the predictor parameters. It has been proved that the azztocorrelation method is superior to the covariance method with respect to the filter stabf-it)‘ and also in an SNR sense, though the increase in gain is only small. The Modified Block Adaptive Coder applies a switching from pitch precitzion to spectrum prediction when the speech segment changes from a voiced or transition region to an unvoiced region. The experiments cont;-:ted in coding, transmission and simulation, used speech samples from .\£=_‘ajr2_1a:r1 and English phrases. Proposal for a speaker reecgnifion syste: and a phoneme identification system has also been outlized towards the end of the thesis.
Resumo:
Tsunamis are water waves generated by a sudden vertical displacement of the water surface. They are waves generated in the ocean by the disturbance associated with seismic activity, under sea volcanic eruptions, submarine landslides, nuclear explosion or meteorite impacts with the ocean. These waves are generated in the ocean and travel into coastal bays, gulfs, estuaries and rivers. These waves travel as gravity waves with a velocity dependent on water depth. The term tsunami is Japanese and means harbour (tsu) and wave (nami). It has been named so because such waves often develop resonant phenomena in harbours after offshore earthquakes.
Resumo:
Comets are the spectacular objects in the night sky since the dawn of mankind. Due to their giant apparitions and enigmatic behavior, followed by coincidental calamities, they were termed as notorious and called as `bad omens'. With a systematic study of these objects modern scienti c community understood that these objects are part of our solar system. Comets are believed to be remnant bodies of at the end of evolution of solar system and possess the material of solar nebula. Hence, these are considered as most pristine objects which can provide the information about the conditions of solar nebula. These are small bodies of our solar system, with a typical size of about a kilometer to a few tens of kilometers orbiting the Sun in highly elliptical orbits. The solid body of a comet is nucleus which is a conglomerated mixture of water ice, dust and some other gases. When the cometary nucleus advances towards the Sun in its orbit the ices sublimates and produces the gaseous envelope around the nucleus which is called coma. The gravity of cometary nucleus is very small and hence can not in uence the motion of gases in the cometary coma. Though the cometary nucleus is a few kilometers in size they can produce a transient, extensive, and expanding atmosphere with size several orders of magnitude larger in space. By ejecting gas and dust into space comets became the most active members of the solar system. The solar radiation and the solar wind in uences the motion of dust and ions and produces dust and ion tails, respectively. Comets have been observed in di erent spectral regions from rocket, ground and space borne optical instruments. The observed emission intensities are used to quantify the chemical abundances of di erent species in the comets. The study of various physical and chemical processes that govern these emissions is essential before estimating chemical abundances in the coma. Cameron band emission of CO molecule has been used to derive CO2 abundance in the comets based on the assumption that photodissociation of CO2 mainly produces these emissions. Similarly, the atomic oxygen visible emissions have been used to probe H2O in the cometary coma. The observed green ([OI] 5577 A) to red-doublet emission ([OI] 6300 and 6364 A) ratio has been used to con rm H2O as the parent species of these emissions. In this thesis a model is developed to understand the photochemistry of these emissions and applied to several comets. The model calculated emission intensities are compared with the observations done by space borne instruments like International Ultraviolet Explorer (IUE) and Hubble Space Telescope (HST) and also by various ground based telescopes.
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
An alkaline protease gene (Eap) was isolated for the first time from a marine fungus, Engyodontium album. Eap consists of an open reading frame of 1,161 bp encoding a prepropeptide consisting of 387 amino acids with a calculated molecular mass of 40.923 kDa. Homology comparison of the deduced amino acid sequence of Eap with other known proteins indicated that Eap encode an extracellular protease that belongs to the subtilase family of serine protease (Family S8). A comparative homology model of the Engyodontium album protease (EAP) was developed using the crystal structure of proteinase K. The model revealed that EAP has broad substrate specificity similar to Proteinase K with preference for bulky hydrophobic residues at P1 and P4. Also, EAP is suggested to have two disulfide bonds and more than two Ca2? binding sites in its 3D structure; both of which are assumed to contribute to the thermostable nature of the protein.
Resumo:
An alkaline protease gene (Eap) was isolated for the first time from a marine fungus, Engyodontium album. Eap consists of an open reading frame of 1,161 bp encoding a prepropeptide consisting of 387 amino acids with a calculated molecular mass of 40.923 kDa. Homology comparison of the deduced amino acid sequence of Eap with other known proteins indicated that Eap encode an extracellular protease that belongs to the subtilase family of serine protease (Family S8). A comparative homology model of the Engyodontium album protease (EAP) was developed using the crystal structure of proteinase K. The model revealed that EAP has broad substrate specificity similar to Proteinase K with preference for bulky hydrophobic residues at P1 and P4. Also, EAP is suggested to have two disulfide bonds and more than two Ca2? binding sites in its 3D structure; both of which are assumed to contribute to the thermostable nature of the protein.
Resumo:
In this paper, a family of bivariate distributions whose marginals are weighted distributions in the original variables is studied. The relationship between the failure rates of the derived and original models are obtained. These relationships are used to provide some characterizations of specific bivariate models
Resumo:
Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.