30 resultados para Halophilic pathogenic vibrios
Resumo:
The present work deals with the characterization of polyhydroxyalkanoates accumulating vibrios from marine benthic environments and production studies of polyhydroxyalkanoates by vibrio sp.BTKB33. Vibrios are a group of (iram negative, curved or straight motile rods that normally inhabit the aquatic environments.The present study therefore aimed at evaluating the occurrence of PHA accumulating vibrios inhabiting marine benthic environments; characterizing the potential PHA accumulators employing phenotypic and genotypic approaches and molecular characterization of the PHA synthase gene. The study also evaluated the PHA production in V:'hri0 sp. strain BTKB33, through submerged fennentation using statistical optimization and characterized the purified biopolymer. Screening for PHA producing vibrios from marine benthic environments. Characterization of PHA producers employing phenotypic and genotypic approaches.The incidence of PHA accumulation in Vibrio sp. isolated from marine sediments was observed to be high, indicating that the natural habitat of these bacteria are stressful. Considering their ubiquitous nature, the ecological role played by vibrios in maintaining the delicate balance of the benthic ecosystem besides returning potential strains, with the ability to elaborate a plethora of extracellular enzymes for industrial application, is significant. The elaboration of several hydrolytic enzymes by individuals also emphasize the crucial role of vibrios in the mineralization process in the marine environment. This study throws light on the extracellular hydrolytic enzyme profile exhibited by vibrios. It was concluded that apart from the PHA accumulation, presence of exoenzyme production and higher MAR index also aids in their survival in the highly challenging benthic enviromnents. The phylogenetic analysis of the strains and studies on intra species variation within PHA accumulating strains reveal their diversity. The isolate selected for production in this study was Vibrio sp. strain BTKB33, identified as V.azureus by 16S rDNA sequencing and phenotypic characterization. The bioprocess variables for PHA production utilising submerged fermentation was optimized employing one-factor-at-a-time-method, PB design and RSM studies. The statistical optimization of bioprocess variables revealed that NaCl concentration, temperature and incubation period are the major bioprocess variables influencing PHA production and PHA content. The presence of Class I PHA synthase genes in BTKB33 was also unveiled. The characterization of phaC genes by PCR and of the extracted polymer employing FTIR and NMR analysis revealed the presence of polyhydroxybutyrate, smallest known PI-IAs, having wider domestic, industrial and medical application. The strain BTKB33 bearing a significant exoenzyme profile, can thus be manipulatedin future for utilization of diverse substrates as C- source for PHA production. In addition to BTKB33, several fast growing Vibrio sp. having PHA accumulating ability were also isolated, revealing the prospects of this environment as a mine for novel PHA accumulating microbes. The findings of this study will provide a reference for further research in industrial production of PHAs from marine microorganisms .
Resumo:
The present study focuses on vibrios especially Vibrio harveyi isolated from shrimp (P. monodon) larval production systems from both east and west coasts during times of mortality. A comprehensive approach has been made to work out their systematics through numerical taxonomy and group them based on RAPD profiling and to segregate the virulent from non- virulent isolates based on the presence of virulent genes as well as their phenotypic expression. The information gathered has helped to develop a simple scheme of identification based on phenotypic characters and segregate the virulent from non virulent strains of V. harveyi.
Resumo:
The great potential for the culture of non-penaeid prawns, especially Macrobrachium rosenbergii in brackish and low saline areas of Indian coastal zone has not yet been fully exploited due to the non availability of healthy seed in adequate numbers and that too in the appropriate period. In spite of setting up several prawn hatcheries around the country to satiate the ever growing demands for the seed of the giant fresh water prawn, the supply still remains fear below the requirement mainly due to the mortality of the larvae at different stages of the larval cycle. In a larval rearing system of Macrobrachium rosenbergii, members of the family Vibrionaceae were found to be dominant flora and this was especially pronounced during the times of mortality However, to develop any sort of prophylactic and therapeutic measures, the pathogenic strains have to be segregated from the lot. This would never be possible unless they were clustered based on the principles of numerical taxonomy It is with these objectives and requirements that the present work involving phenotypic characterization of the isolates belonging to the family Vibrionaceae and working out the numerical taxonomy, determination of mole % G+C ratio, segregation of the pathogenic strains and screening antibiotics as therapeutics at times of emergency, was carried out.
Resumo:
Microcosm studies were performed to evaluate the survival of Escherichia coli, Salmonella paratyphi and Vibrio parahaemolyticus in water and sediment collected from the freshwater region of Vembanad Lake (9 35◦N 76 25◦E) along the south west coast of India. All three test microorganisms showed significantly (p < 0.01) higher survival in sediment compared to overlying water. The survival in different sediment types with different particle size and organic carbon content revealed that sediment with small particle size and high organic carbon content could enhance their extended survival (p < 0.05). The results indicate that sediments of the Lake could act as a reservoir of pathogenic bacteria and exhibit a potential health hazard from possible resuspension and subsequent ingestion during recreational activities. Therefore, the assessment of bacterial concentration in freshwater Lake sediments used for contact and non contact recreation has of considerable significance for the proper assessment of microbial pollution of the overlying water, and for the management and protection of related health risk at specific recreational sites. Besides, assessment of the bacterial concentration in sediments can be used as a relatively stable indicator of long term mean bacterial concentration in the water column above
Resumo:
Prevalence of faecal indicator bacteria, Escherichia coli and pathogenic bacteria, Vibrio cholerae, Vibrio parahaemolyticus and Salmonella were analysed in Vembanadu lake (98350N 768250E), along south west coast of India for a period of one year from ten stations on the southern and northern sides of a salt water regulator constructed in Vembanadu Lake in order to prevent incursion of seawater during certain periods of the year. While the northern side of the lake has a connection to the sea, the southern side is enclosed when the salt water regulator is closed. The results revealed the water body is polluted with high faecal coliform bacteria with mean MPN value ranging from 1718-7706/100 ml. E. coli, V. cholerae, V. parahaemolyticus and Salmonella serotypes such as S. paratyphi A, B, C and S. newport were isolated and this is the first report on the isolation of these Salmonella serovars from this lake. E. coli showed highest percentage of incidence (85.6–86.7%) followed by Salmonella (42–57%), V. choleare (40–45%) and V. parahaemolyticus (31.5–32%). The increased prevalence of indicator and pathogenic bacteria in the enclosed southern part of Vembanadu Lake may be resulting from the altered flow patterns due to the salt water regulator.
Resumo:
Prevalence of faecal coliform bacteria and the survival of Escherichia coli, Vibrio parahaemolyticus and Salmonella paratyphi were studied in the water and sediment from Vembanadu Lake in the presence and absence of protozoan predators. The density of faecal coliform bacteria ranged between mean MPN value 5080–9000/100 ml in water and 110,000–988,000/1 g in sediment (p <0.01), which was 110 times greater than in overlying water. The laboratory microcosm studies revealed that E. coli, V. parahaemolyticus and S. paratyphi showed significantly higher survival (p <0.05) potential in sediment than in overlying water both in the presence and absence of protozoan predators. The results indicate that Vembanadu Lake sediment constitutes a reservoir of pathogenic bacteria and exhibits potential health hazard from possible resuspension and subsequent ingestion during recreational activities. Therefore, assessment of bacterial concentration in freshwater lake sediments used for contact and non-contact recreation is of considerable significance for the proper assessment of microbial pollution of the overlying water and the management and protection of related health risk at specific recreational sites. In addition, assessment of the bacterial concentration in sediments can be used as a relatively stable indicator of long-term mean bacterial concentration in the water column above.
Resumo:
Low-density polyethylene, (LDPE) was mixed with two grades of tapioca starch–lowgrade and high-grade. Various compositions were prepared and mechanical and thermal studies performed. The biodegradability of these samples was checked using a culture medium containing Vibrios (an amylase-producing bacteria), which was isolated from a marine benthic environment. The soil burial test and reprocessability of these samples were checked. The studies on biodegradability show that these blends are partially biodegradable. These low-density polyethylene-starch blends are reprocessable without sacrificing much of their mechanical properties
Resumo:
Low-density polyethylene was mixed with dextrin having different particle sizes (100, 200 and 300 mesh). Various compositions were prepared and their mechanical properties were evaluated and thermal studies have been carried out. Biodegradability of these samples has been checked using liquid culture medium containing Vibrios (an amylase producing bacteria), which were isolated from marine benthic environment. Soil burial test was done and reprocessability of these samples was evaluated. The results indicate that the newly prepared blends are reprocessable without sacrificing much of their mechanical properties. The biodegradability tests on these blends indicate that these are partially biodegradable
Resumo:
The fresh water prawn, Macrobrachium rosenbergii, has proven potential for use as an aquaculture species (Hanson & Goodwin, 1997; Kurup, 1984). In India alone, culture of this species of prawn in low saline areas requires about 200 million seed per year (Kurup, 1984). In hatcheries poor survival rate has been associated with vibriosis at di#erent stages of the larval cycle. Members of the family Vibrionaceae associated with the larvae of M. rosenbergii were shown to be pathogenic under laboratory conditions (Bhat et al., 2000, in press). Vibrios have been associated with mortality of penaeid prawns by several workers (Aquacop, 1977; Hameed, 1993; Karunasagar et al., 1994). Two methods have been suggested to protect both the larvae and juveniles from vibriosis; one is the administration of bacterins prepared from pathogenic strains (Itami et al., 1989, 1991; Adams, 1991; Song & Sung, 1990; Sung et al., 1991) and the other is the utilization of yeast 1-3 and 1-6 glucans as immunostimulants for enhancing the non-specific defense system (Sung et al., 1994; Song et al., 1997). In the light of these observations it was hypothesised that bacterins and yeast glucans may also be e#ective in protecting the larvae of M. rosenbergii from vibriosis as has been achieved in the case of penaeids. To examine this hypothesis, the ability of bacterins and an extracellular glucan-producing yeast to increase the overall survival and metamorphosis of larvae in a hatchery, as well as to protect against an experimental challenge under laboratory conditions, was evaluated
Resumo:
This study shows that the disease resistance and survival rate of Penaeus monodon in a larval rearing systems can be enhanced by supplementing with antagonistic or non-antagonistic probiotics. The antagonistic mode of action of Pseudomonas MCCB 102 and MCCB 103 against vibrios was demonstrated in larval mesocosm with cultures having su⁄cient concentration of antagonistic compounds in their culture supernatant. Investigations on the antagonistic properties of Bacillus MCCB 101, Pseudomonas MCCB 102 and MCCB 103 and Arthrobacter MCCB 104 against Vibrio harveyi MCCB111under in vitro conditions revealed that Pseudomonas MCCB 102 and MCCB 103 were inhibitory to the pathogen.These inhibitory propertieswere further con¢rmed in the larval rearing systems of P. monodon. All these four probionts signi¢cantly improved larval survival in long-term treatments as well as when challengedwith a pathogenic strain ofV. harveyiMCCB111. We could demonstrate that Pseudomonas MCCB 102 andMCCB103 accorded disease resistance and a higher survival rate in P. monodon larval rearing systems throughactive antagonism of vibrios,whereas Bacillus MCCB 101 and Arthrobacter MCCB 104 functioned as probiotics through immunostimulatory and digestive enzyme-supporting modes of action.
Resumo:
Surveys for bacteriological analysis of larval samples to isolate the associated vibrios were carried out during 1985^1992, 2001 and 2002 in three di¡erent hatcheries located on the southwest coast of India. Vibrio isolates were examined for their species diversity, virulence based on haemolysis in prawn blood agar, lipolysis, proteolysis and chitinolysis and antibiotic sensitivity.Vibrio cholerae was the predominant species in the apparently healthy larval samples, whereas V. alginolyticus and V. vulni¢cus dominated during disease and morbidity. No correlation was found between the hydrolytic properties and haemolytic activity of the vibrios associated with the larvae. All isolates were resistant to erythromycin and resistance to oxytetracycline, ampicillin and streptomycin sulphate was prevalent among the larger section of the Vibrio population. This suggested that antibiotic application may not be of much use to protect the larvae fromvibriosis. This is the ¢rst report on the diversity of Vibrio species associated with Macrobrachium rosenbergii larvae and their virulence characteristics based on haemolysis in prawn blood agar
Resumo:
Chitosan is a biocompatible and biodegradable natural polymer with established antimicrobial properties against specific microorganisms. The present study demonstrates its antibacterial activity against 48 isolates of Vibrio species from prawn larval rearing systems. The antibacterial activity had a positive correlation with the concentration of chitosan. This work opens up avenues for using chitosan as a prophylactic biopolymer for protecting prawn larvae from vibriosis.
Resumo:
This is a valuable research work in which authors have demonstrated the antagonistic effects of pseudomonas on the growth of vibrio
Characterization and Pathogenicity of Vibrio cholerae and Vibrio vulnificus from Marine environments
Resumo:
The genus Vibrioof the family Vibrionaceae are Gram negative, oxidasepositive, rod- or curved- rodshaped facultative anaerobes, widespread in marine and estuarine environments. Vibrio species are opportunistic human pathogens responsible for diarrhoeal disease, gastroenteritis, septicaemia and wound infections and are also pathogens of aquatic organisms, causing infections to crustaceans, bivalves and fishes. In the present study, marine environmental samples like seafood and water and sediment samples from aquafarms and mangroves were screened for the presence of Vibrio species. Of the134 isolates obtained from the various samples, 45 were segregated to the genus Vibrio on the basis of phenotypic characterization.like Gram staining, oxidase test, MoF test and salinity tolerance. Partial 16S rDNA sequence analysis was utilized for species level identification of the isolates and the strains were identified as V. cholerae(N=21), V. vulnificus(N=18), V. parahaemolyticus(N=3), V. alginolyticus (N=2) and V. azureus (N=1). The genetic relatedness and variations among the 45 Vibrio isolates were elucidated based on 16S rDNA sequences. Phenotypic characterization of the isolates was based on their response to 12 biochemical tests namely Voges-Proskauers’s (VP test), arginine dihydrolase , tolerance to 3% NaCl test, ONPG test that detects β-galactosidase activity, and tests for utilization of citrate, ornithine, mannitol, arabinose, sucrose, glucose, salicin and cellobiose. The isolates exhibited diverse biochemical patterns, some specific for the species and others indicative of their environmental source.Antibiogram for the isolates was determined subsequent to testing their susceptibility to 12 antibiotics by the disc diffusion method. Varying degrees of resistance to gentamycin (2.22%), ampicillin(62.22%), nalidixic acid (4.44%), vancomycin (86.66), cefixime (17.77%), rifampicin (20%), tetracycline (42.22%) and chloramphenicol (2.22%) was exhibited. All the isolates were susceptible to streptomycin, co-trimoxazole, trimethoprim and azithromycin. Isolates from all the three marine environments exhibited multiple antibiotic resistance, with high MAR index value. The molecular typing methods such as ERIC PCR and BOX PCR revealed intraspecies relatedness and genetic heterogeneity within the environmental isolatesof V. cholerae and V. vulnificus. The 21 strains of V. choleraewere serogroupedas non O1/ non O139 by screening for the presence O1rfb and O139 rfb marker genes by PCR. The virulence/virulence associated genes namely ctxA, ctxB, ace, VPI, hlyA, ompU, rtxA, toxR, zot, nagst, tcpA, nin and nanwere screened in V. cholerae and V. vulnificusstrains.The V. vulnificusstrains were also screened for three species specific genes viz., cps, vvhand viu. In V. cholerae strains, the virulence associated genes like VPI, hlyA, rtxA, ompU and toxR were confirmed by PCR. All the isolates, except for strain BTOS6, harbored at least one or a combination of the tested genes and V. choleraestrain BTPR5 isolated from prawn hosted the highest number of virulence associated genes. Among the V. vulnificusstrains, only 3 virulence genes, VPI, toxR and cps, were confirmed out of the 16 tested and only 7 of the isolates had these genes in one or more combinations. Strain BTPS6 from aquafarm and strain BTVE4 from mangrove samples yielded positive amplification for the three genes. The toxRgene from 9 strains of V. choleraeand 3 strains of V. vulnificus were cloned and sequenced for phylogenetic analysis based on nucleotide and the amino acid sequences. Multiple sequence alignment of the nucleotide sequences and amino acid sequences of the environmental strains of V. choleraerevealed that the toxRgene in the environmental strains are 100% homologous to themselves and to the V. choleraetoxR gene sequence available in the Genbank database. The 3 strains of V. vulnificus displayed high nucleotide and amino acid sequence similarity among themselves and to the sequences of V. cholerae and V. harveyi obtained from the GenBank database, but exhibited only 72% homology to the sequences of its close relative V. vulnificus. Structure prediction of the ToxR protein of Vibrio cholerae strain BTMA5 was by PHYRE2 software. The deduced amino acid sequence showed maximum resemblance with the structure of DNA-binding domain of response regulator2 from Escherichia coli k-12 Template based homology modelling in PHYRE2 successfully modelled the predicted protein and its secondary structure based on protein data bank (PDB) template c3zq7A. The pathogenicity studies were performed using the nematode Caenorhabditiselegansas a model system. The assessment of pathogenicity of environmental strain of V. choleraewas conducted with E. coli strain OP50 as the food source in control plates, environmental V. cholerae strain BTOS6, negative for all tested virulence genes, to check for the suitability of Vibrio sp. as a food source for the nematode;V. cholerae Co 366 ElTor, a clinical pathogenic strain and V. cholerae strain BTPR5 from seafood (Prawn) and positive for the tested virulence genes like VPI, hlyA, ompU,rtxA and toxR. It was found that V. cholerae strain BTOS6 could serve as a food source in place of E. coli strain OP50 but behavioral aberrations like sluggish movement and lawn avoidance and morphological abnormalities like pharyngeal and intestinal distensions and bagging were exhibited by the worms fed on V. cholerae Co 366 ElTor strain and environmental BTPR5 indicating their pathogenicity to the nematode. Assessment of pathogenicity of the environmental strains of V. vulnificus was performed with V. vulnificus strain BTPS6 which tested positive for 3 virulence genes, namely, cps, toxRand VPI, and V. vulnificus strain BTMM7 that did not possess any of the tested virulence genes. A reduction was observed in the life span of worms fed on environmental strain of V. vulnificusBTMM7 rather than on the ordinary laboratory food source, E. coli OP50. Behavioral abnormalities like sluggish movement, lawn avoidance and bagging were also observed in the worms fed with strain BTPS6, but the pharynx and the intestine were intact. The presence of multi drug resistant environmental Vibrio strainsthat constitute a major reservoir of diverse virulence genes are to be dealt with caution as they play a decisive role in pathogenicity and horizontal gene transfer in the marine environments.
Resumo:
The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.