68 resultados para Gaussian and Lorentz spectral fitting
Resumo:
The thesis deals with some of the non-linear Gaussian and non-Gaussian time models and mainly concentrated in studying the properties and application of a first order autoregressive process with Cauchy marginal distribution. In this thesis some of the non-linear Gaussian and non-Gaussian time series models and mainly concentrated in studying the properties and application of a order autoregressive process with Cauchy marginal distribution. Time series relating to prices, consumptions, money in circulation, bank deposits and bank clearing, sales and profit in a departmental store, national income and foreign exchange reserves, prices and dividend of shares in a stock exchange etc. are examples of economic and business time series. The thesis discuses the application of a threshold autoregressive(TAR) model, try to fit this model to a time series data. Another important non-linear model is the ARCH model, and the third model is the TARCH model. The main objective here is to identify an appropriate model to a given set of data. The data considered are the daily coconut oil prices for a period of three years. Since it is a price data the consecutive prices may not be independent and hence a time series based model is more appropriate. In this study the properties like ergodicity, mixing property and time reversibility and also various estimation procedures used to estimate the unknown parameters of the process.
Resumo:
Holographic technology is at the dawn of quick evolution in various new areas including holographic data storage, holographic optical elements, artificial intelligence, optical interconnects, optical correlators, commerce, medical practice, holographic weapon sight, night vision goggles and games etc. One of the major obstacles for the success of holographic technology to a large extent is the lack of suitable recording medium. Compared with other holographic materials such as dichromated gelatin and silver halide emulsions, photopolymers have the great advantage of recording and reading holograms in real time and the spectral sensitivity could be easily shifted to the type of recording laser used by simply changing the sensitizing dye. Also these materials possess characteristics such as good light sensitivity, real time image development, large dynamic range, good optical properties, format flexibility, and low cost. This thesis describes the attempts made to fabricate highly economic photopolymer films for various holographic applications. In the present work, Poly (vinyl alcohol) (PVA) and poly (vinyl chloride) (PVC) are selected as the host polymer matrices and methylene blue (MB) is used as the photosensitizing dye. The films were fabricated using gravity settling method. No chemical treatment or pre/post exposures were applied to the films. As the outcome of the work, photopolymer films with more than 70% efficiency, a permanent recording material which required no fixing process, a reusable recording material etc. were fabricated.
Resumo:
Copper(II) complexes of two biologically important ligands, viz., embelin (2,5-dihydroxy-3-undecyl-2,5-cyclohexadien 1,4-dione) and 2-aminobenzimidazole were entrapped in the cages of zeolite Y by the flexible ligand method. The capability of these compounds in catalyzing the reduction of oxygen (industrially known as deoxo reaction) was explored and the results indicate an enhancement of the catalytic properties from that of the simple copper ion exchanged zeolite. These point to the ability of the ligands in enhancing the oxygen binding capability of the metal ion. Elemental analyses, Fourier transform infrared (FTIR), diffuse reflectance and EPR spectral studies, magnetic susceptibility measurements, TG, surface area analyses and powder X-ray diffraction studies were used in understanding the presence, composition and structure of the complexes inside the cages. The study also reveals the increased thermal and mechanical stability of the complexes as a result of encapsulation.
Resumo:
The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36 x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.
Resumo:
The Schiff base, 3-hydroxyquinoxaline-2-carboxalidine-4-aminoantipyrine, was synthesized by the condensation of 3-hydroxyquinoxaline-2-carboxaldehyde with 4-aminoantipyrine. HPLC, FT-IR and NMR spectral data revealed that the compound exists predominantly in the amide tautomeric form and exhibits both absorption and fluorescence solvatochromism, large stokes shift, two electron quasireversible redox behaviour and good thermal stability, with a glass transition temperature of 104 oC. The third-order non-linear optical character was studied using open aperture Z-scan methodology employing 7 ns pulses at 532 nm. The third-order non-linear absorption coefficient, b, was 1.48 x 10-6 cm W-1 and the imaginary part of the third-order non-linear optical susceptibility, Im c(3), was 3.36x10-10 esu. The optical limiting threshold for the compound was found to be 340 MW cm-2.
Resumo:
The electron donor properties of Nd2O3 activated at 300, 500 and 800°C were investigated through studies on the adsorption of electron acceptors of various electron affinities - 7, 7, 8,8-tetracyanoquinodimethane (2.84 eV). 2, 3, 5, 6-tetrachloro-l , 4-benzoquinone (2.40 eV). p-dinitrobenzene (1.77 eV), and m-dinitrobenzene (1.26 eV) in solvents acetonitrile and 1, 4-dioxan. The extent of electron transfer during adsorption has been found from magnetic measurements and electronic spectral data. The corresponding data on mixed oxides of neodymium and aluminium are reported for various. compositions. The acid-base properties of catalysts were also determined using a set of Hammett indicators.
Resumo:
The electron donor properties of Pr6O11 activated at 300. 500 and 800°C are reported from the studies on adsorption of electron acceptors of various electron affinity (7. 7, 8, 8-tetracyanoquinodimethane. 2, 3. 5, 6-tetrachloro-l, 4-benzoquin one. p-dinitrobenzene. and m-dinitrobenzene) in three solvents (acetonitrile, 1,4-dioxan and ethyl acetate). The extent of electron transfer during adsorption is understood from magnetic measurements and ESR spectral data. The corresponding data on mixed oxides of Pr and Al are reported for various compositions, The acid / base properties of these oxides are determined using a set of Hammett indicators.
Resumo:
Eight new transition metal complexes of benzaldehyde-N(4)–phenylsemicarbazone have been synthesized and characterized by elemental analyses, molar conductance, electronic and infrared spectral studies. In all the complexes, the semicarbazone is coordinated as neutral bidentate ligand. 1H NMR spectrum of [Zn(HL)2(OAc)2] shows that there is no enolisation of the ligand in the complex. The magnetic susceptibility measurements indicate that Cr(III), Mn(II), Fe(III), Co(II) and Cu(II) complexes are paramagnetic and Ni(II) is diamagnetic. The EPR spectrum of [Mn(HL)2(OAc)2] in DMF solution at 77K shows hyperfine sextet with low intensity forbidden lines lying between each of the two main hyperfine lines. The g values calculated for the [Cu(HL)2SO4] complex in frozen DMF, indicate the presence of unpaired electron in the dx2−y2 orbital. The metal ligand bonding parameters evaluated showed strong in-plane bonding and in-plane bonding. The ligand and complexes were screened for their possible antimicrobial activities.
Resumo:
The prospective impact of nanomaterials in science and technology has followed an increasing trend due to their unique chemical and physical properties compared to bulk. Significant advances in current technologies in areas such as clean energy production, electronics, medicine, and environment have fuelled major research and development efforts in nanotechnology around the world. This leads to the opportunity to use such nanostructured materials in novel applications and devices. Ceria, zirconia, alumina and titania are some of the major oxides which find vast applications as a nanomaterial on a wider side.
Studies on Some Transition Metal Complexes of Schiff Bases Derived from Quinoxaline-2-carboxaldehyde
Resumo:
Two series of transition metal complexes of Schiff bases derived from quinoxaline-2-carboxaldehyde with semicarbazide (QSC) and furfurylamine (QFA) were synthesised and characterised by elemental analyses, molar conductance and magnetic susceptibility measurements, IR, electronic and EPR spectral studies. The QSC complexes have the general formula [M(QSC)Cl2]. A tetrahedral structure has been assigned for the Mn(II), Co(II) and Ni(II) complexes and a square-planar structure for the Cu(II) complex. The QFA complexes have the formula [M(QFA)2Cl2]. An octahedral structure has been assigned for these complexes. All of the complexes exhibit catalytic activity towards the oxidation of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) using atmospheric oxygen. The cobalt(II) complex of the ligand QFA was found to be the most active catalyst.
Resumo:
Optical absorption and emission spectral studies of various phthalocyanine (Pc) molecules in PVA matrix have been reported for the first time. The recorded spectra are analyzed to get the important spectral parameters, such as optical absorption cross-section (σa), emission cross-section (σe), oscillator strength (f), fluorescence bandwidth (Δλ), emission wavelength (λ), radiative decay time (τ) and optical gain (G). Analysis shows that the emission cross-section and optical gain are maximum in the NdHPc2-doped PVA matrix. However, a comparison of the calculated emission parameters with that of borate glass matrix show that they are many times smaller in the present matrix.
Resumo:
Optical absorption and emission spectral studies of various phthalocyanine molecules, viz., LaPc, NdPc, SmPc, EuPc, CuPc and ZnPc in a polymer matrix of cyano acrylate are reported for the first time. All the absorption spectra show an intense B band (Soret) in the UV region followed by a weaker Q band in the visible region. The positions of the Q and B bands are found to have dependence on the metallic substitution. Values of the important spectral parameters, viz., molar extinction coefficient (ϵ), oscillator strength (f), radiative transition rate and decay time of the excited singlet state are also presented and compared with other solid matrices. The recorded fluorescence spectrum shows two broad emission bands in the case of NdPc, whereas for ZnPc only a very weak band is observed. The absence of emission bands for the other metallated phthalocyanines is attributed to increased spin orbit interaction and intersystem crossing.
Resumo:
This thesis deals with the synthesis, characterisation and catalytic activity studies of some new transition metal complexes of the Schiff bases, derived from quinoxaline—2—carboxaldehyde. The model complexes derived from specially designed and synthesised Schiff bases help us to understand the chemistry of biological systems. Schiff bases derived from heterocyclic aldehydes like quinoxaline-2-carboxaldehyde provide great structural diversity during complexation. The Schiff bases synthesised in the present study ' are quinoxaline—2—carboxa.lidene-2-aminophenol (QAP). quinoxaline—2carboxaldehyde semicarbazone (QSC), quinoxaline-2—carboxalidene—o— phenylenediamine (QOD) and quinoxaline-2-carboxalidene-2-furfurylamine (QFA). The elucidation of the structure of these complexes is done using conductance, magnetic susceptibility measurements. infrared, UV—Vis and EPR spectral studies.
Resumo:
Dental caries persists to be the most predominant oral disease in spite of remarkable progress made during the past half- century to reduce its prevalence. Early diagnosis of carious lesions is an important factor in the prevention and management of dental caries. Conventional procedures for caries detection involve visual-tactile and radiographic examination, which is considered as “gold standard”. These techniques are subjective and are unable to detect the lesions until they are well advanced and involve about one-third of the thickness of enamel. Therefore, all these factors necessitate the need for the development of new techniques for early diagnosis of carious lesions. Researchers have been trying to develop various instruments based on optical spectroscopic techniques for detection of dental caries during the last two decades. These optical spectroscopic techniques facilitate noninvasive and real-time tissue characterization with reduced radiation exposure to patient, thereby improving the management of dental caries. Nonetheless, a costeffective optical system with adequate sensitivity and specificity for clinical use is still not realized and development of such a system is a challenging task.Two key techniques based on the optical properties of dental hard tissues are discussed in this current thesis, namely laser-induced fluorescence (LIF) and diffuse reflectance (DR) spectroscopy for detection of tooth caries and demineralization. The work described in this thesis is mainly of applied nature, focusing on the analysis of data from in vitro tooth samples and extending these results to diagnose dental caries in a clinical environment. The work mainly aims to improve and contribute to the contemporary research on fluorescence and diffuse reflectance for discriminating different stages of carious lesions. Towards this, a portable and compact laser-induced fluorescence and reflectance spectroscopic system (LIFRS) was developed for point monitoring of fluorescence and diffuse reflectance spectra from tooth samples. The LIFRS system uses either a 337 nm nitrogen laser or a 404 nm diode laser for the excitation of tooth autofluorescence and a white light source (tungsten halogen lamp) for measuring diffuse reflectance.Extensive in vitro studies were carried out on extracted tooth samples to test the applicability of LIFRS system for detecting dental caries, before being tested in a clinical environment. Both LIF and DR studies were performed for diagnosis of dental caries, but special emphasis was given for early detection and also to discriminate between different stages of carious lesions. Further the potential of LIFRS system in detecting demineralization and remineralization were also assessed.In the clinical trial on 105 patients, fluorescence reference standard (FRS) criteria was developed based on LIF spectral ratios (F500/F635 and F500/F680) to discriminate different stages of caries and for early detection of dental caries. The FRS ratio scatter plots developed showed better sensitivity and specificity as compared to clinical and radiographic examination, and the results were validated with the blindtests. Moreover, the LIF spectra were analyzed by curve-fitting using Gaussian spectral functions and the derived curve-fitted parameters such as peak position, Gaussian curve area, amplitude and width were found to be useful for distinguishing different stages of caries. In DR studies, a novel method was established based on DR ratios (R500/R700, R600/R700 and R650/R700) to detect dental caries with improved accuracy. Further the diagnostic accuracy of LIFRS system was evaluated in terms of sensitivity, specificity and area under the ROC curve. On the basis of these results, the LIFRS system was found useful as a valuable adjunct to the clinicians for detecting carious lesions.