15 resultados para Quantum algorithms
em Universit
Resumo:
Key agreement is a cryptographic scenario between two legitimate parties, who need to establish a common secret key over a public authenticated channel, and an eavesdropper who intercepts all their messages in order to learn the secret. We consider query complexity in which we count only the number of evaluations (queries) of a given black-box function, and classical communication channels. Ralph Merkle provided the first unclassified scheme for secure communications over insecure channels. When legitimate parties are willing to ask O(N) queries for some parameter N, any classical eavesdropper needs Omega(N^2) queries before being able to learn their secret, which is is optimal. However, a quantum eavesdropper can break this scheme in O(N) queries. Furthermore, it was conjectured that any scheme, in which legitimate parties are classical, could be broken in O(N) quantum queries. In this thesis, we introduce protocols à la Merkle that fall into two categories. When legitimate parties are restricted to use classical computers, we offer the first secure classical scheme. It requires Omega(N^{13/12}) queries of a quantum eavesdropper to learn the secret. We give another protocol having security of Omega(N^{7/6}) queries. Furthermore, for any k>= 2, we introduce a classical protocol in which legitimate parties establish a secret in O(N) queries while the optimal quantum eavesdropping strategy requires Theta(N^{1/2+k/{k+1}}) queries, approaching Theta(N^{3/2}) when k increases. When legitimate parties are provided with quantum computers, we present two quantum protocols improving on the best known scheme before this work. Furthermore, for any k>= 2, we give a quantum protocol in which legitimate parties establish a secret in O(N) queries while the optimal quantum eavesdropping strategy requires Theta(N^{1+{k}/{k+1}})} queries, approaching Theta(N^{2}) when k increases.
Resumo:
La théorie de l'information quantique étudie les limites fondamentales qu'imposent les lois de la physique sur les tâches de traitement de données comme la compression et la transmission de données sur un canal bruité. Cette thèse présente des techniques générales permettant de résoudre plusieurs problèmes fondamentaux de la théorie de l'information quantique dans un seul et même cadre. Le théorème central de cette thèse énonce l'existence d'un protocole permettant de transmettre des données quantiques que le receveur connaît déjà partiellement à l'aide d'une seule utilisation d'un canal quantique bruité. Ce théorème a de plus comme corollaires immédiats plusieurs théorèmes centraux de la théorie de l'information quantique. Les chapitres suivants utilisent ce théorème pour prouver l'existence de nouveaux protocoles pour deux autres types de canaux quantiques, soit les canaux de diffusion quantiques et les canaux quantiques avec information supplémentaire fournie au transmetteur. Ces protocoles traitent aussi de la transmission de données quantiques partiellement connues du receveur à l'aide d'une seule utilisation du canal, et ont comme corollaires des versions asymptotiques avec et sans intrication auxiliaire. Les versions asymptotiques avec intrication auxiliaire peuvent, dans les deux cas, être considérées comme des versions quantiques des meilleurs théorèmes de codage connus pour les versions classiques de ces problèmes. Le dernier chapitre traite d'un phénomène purement quantique appelé verrouillage: il est possible d'encoder un message classique dans un état quantique de sorte qu'en lui enlevant un sous-système de taille logarithmique par rapport à sa taille totale, on puisse s'assurer qu'aucune mesure ne puisse avoir de corrélation significative avec le message. Le message se trouve donc «verrouillé» par une clé de taille logarithmique. Cette thèse présente le premier protocole de verrouillage dont le critère de succès est que la distance trace entre la distribution jointe du message et du résultat de la mesure et le produit de leur marginales soit suffisamment petite.
Resumo:
Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Naïvement perçu, le processus d’évolution est une succession d’événements de duplication et de mutations graduelles dans le génome qui mènent à des changements dans les fonctions et les interactions du protéome. La famille des hydrolases de guanosine triphosphate (GTPases) similaire à Ras constitue un bon modèle de travail afin de comprendre ce phénomène fondamental, car cette famille de protéines contient un nombre limité d’éléments qui diffèrent en fonctionnalité et en interactions. Globalement, nous désirons comprendre comment les mutations singulières au niveau des GTPases affectent la morphologie des cellules ainsi que leur degré d’impact sur les populations asynchrones. Mon travail de maîtrise vise à classifier de manière significative différents phénotypes de la levure Saccaromyces cerevisiae via l’analyse de plusieurs critères morphologiques de souches exprimant des GTPases mutées et natives. Notre approche à base de microscopie et d’analyses bioinformatique des images DIC (microscopie d’interférence différentielle de contraste) permet de distinguer les phénotypes propres aux cellules natives et aux mutants. L’emploi de cette méthode a permis une détection automatisée et une caractérisation des phénotypes mutants associés à la sur-expression de GTPases constitutivement actives. Les mutants de GTPases constitutivement actifs Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V ont été analysés avec succès. En effet, l’implémentation de différents algorithmes de partitionnement, permet d’analyser des données qui combinent les mesures morphologiques de population native et mutantes. Nos résultats démontrent que l’algorithme Fuzzy C-Means performe un partitionnement efficace des cellules natives ou mutantes, où les différents types de cellules sont classifiés en fonction de plusieurs facteurs de formes cellulaires obtenus à partir des images DIC. Cette analyse démontre que les mutations Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V induisent respectivement des phénotypes amorphe, allongé, rond et large qui sont représentés par des vecteurs de facteurs de forme distincts. Ces distinctions sont observées avec différentes proportions (morphologie mutante / morphologie native) dans les populations de mutants. Le développement de nouvelles méthodes automatisées d’analyse morphologique des cellules natives et mutantes s’avère extrêmement utile pour l’étude de la famille des GTPases ainsi que des résidus spécifiques qui dictent leurs fonctions et réseau d’interaction. Nous pouvons maintenant envisager de produire des mutants de GTPases qui inversent leur fonction en ciblant des résidus divergents. La substitution fonctionnelle est ensuite détectée au niveau morphologique grâce à notre nouvelle stratégie quantitative. Ce type d’analyse peut également être transposé à d’autres familles de protéines et contribuer de manière significative au domaine de la biologie évolutive.
Resumo:
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.
Resumo:
Dans cette thèse l’ancienne question philosophique “tout événement a-t-il une cause ?” sera examinée à la lumière de la mécanique quantique et de la théorie des probabilités. Aussi bien en physique qu’en philosophie des sciences la position orthodoxe maintient que le monde physique est indéterministe. Au niveau fondamental de la réalité physique – au niveau quantique – les événements se passeraient sans causes, mais par chance, par hasard ‘irréductible’. Le théorème physique le plus précis qui mène à cette conclusion est le théorème de Bell. Ici les prémisses de ce théorème seront réexaminées. Il sera rappelé que d’autres solutions au théorème que l’indéterminisme sont envisageables, dont certaines sont connues mais négligées, comme le ‘superdéterminisme’. Mais il sera argué que d’autres solutions compatibles avec le déterminisme existent, notamment en étudiant des systèmes physiques modèles. Une des conclusions générales de cette thèse est que l’interprétation du théorème de Bell et de la mécanique quantique dépend crucialement des prémisses philosophiques desquelles on part. Par exemple, au sein de la vision d’un Spinoza, le monde quantique peut bien être compris comme étant déterministe. Mais il est argué qu’aussi un déterminisme nettement moins radical que celui de Spinoza n’est pas éliminé par les expériences physiques. Si cela est vrai, le débat ‘déterminisme – indéterminisme’ n’est pas décidé au laboratoire : il reste philosophique et ouvert – contrairement à ce que l’on pense souvent. Dans la deuxième partie de cette thèse un modèle pour l’interprétation de la probabilité sera proposé. Une étude conceptuelle de la notion de probabilité indique que l’hypothèse du déterminisme aide à mieux comprendre ce que c’est qu’un ‘système probabiliste’. Il semble que le déterminisme peut répondre à certaines questions pour lesquelles l’indéterminisme n’a pas de réponses. Pour cette raison nous conclurons que la conjecture de Laplace – à savoir que la théorie des probabilités présuppose une réalité déterministe sous-jacente – garde toute sa légitimité. Dans cette thèse aussi bien les méthodes de la philosophie que de la physique seront utilisées. Il apparaît que les deux domaines sont ici solidement reliés, et qu’ils offrent un vaste potentiel de fertilisation croisée – donc bidirectionnelle.
Resumo:
Dans ce mémoire, nous nous pencherons tout particulièrement sur une primitive cryptographique connue sous le nom de partage de secret. Nous explorerons autant le domaine classique que le domaine quantique de ces primitives, couronnant notre étude par la présentation d’un nouveau protocole de partage de secret quantique nécessitant un nombre minimal de parts quantiques c.-à-d. une seule part quantique par participant. L’ouverture de notre étude se fera par la présentation dans le chapitre préliminaire d’un survol des notions mathématiques sous-jacentes à la théorie de l’information quantique ayant pour but primaire d’établir la notation utilisée dans ce manuscrit, ainsi que la présentation d’un précis des propriétés mathématique de l’état de Greenberger-Horne-Zeilinger (GHZ) fréquemment utilisé dans les domaines quantiques de la cryptographie et des jeux de la communication. Mais, comme nous l’avons mentionné plus haut, c’est le domaine cryptographique qui restera le point focal de cette étude. Dans le second chapitre, nous nous intéresserons à la théorie des codes correcteurs d’erreurs classiques et quantiques qui seront à leur tour d’extrême importances lors de l’introduction de la théorie quantique du partage de secret dans le chapitre suivant. Dans la première partie du troisième chapitre, nous nous concentrerons sur le domaine classique du partage de secret en présentant un cadre théorique général portant sur la construction de ces primitives illustrant tout au long les concepts introduits par des exemples présentés pour leurs intérêts autant historiques que pédagogiques. Ceci préparera le chemin pour notre exposé sur la théorie quantique du partage de secret qui sera le focus de la seconde partie de ce même chapitre. Nous présenterons alors les théorèmes et définitions les plus généraux connus à date portant sur la construction de ces primitives en portant un intérêt particulier au partage quantique à seuil. Nous montrerons le lien étroit entre la théorie quantique des codes correcteurs d’erreurs et celle du partage de secret. Ce lien est si étroit que l’on considère les codes correcteurs d’erreurs quantiques étaient de plus proches analogues aux partages de secrets quantiques que ne leur étaient les codes de partage de secrets classiques. Finalement, nous présenterons un de nos trois résultats parus dans A. Broadbent, P.-R. Chouha, A. Tapp (2009); un protocole sécuritaire et minimal de partage de secret quantique a seuil (les deux autres résultats dont nous traiterons pas ici portent sur la complexité de la communication et sur la simulation classique de l’état de GHZ).
Resumo:
Les décisions de localisation sont souvent soumises à des aspects dynamiques comme des changements dans la demande des clients. Pour y répondre, la solution consiste à considérer une flexibilité accrue concernant l’emplacement et la capacité des installations. Même lorsque la demande est prévisible, trouver le planning optimal pour le déploiement et l'ajustement dynamique des capacités reste un défi. Dans cette thèse, nous nous concentrons sur des problèmes de localisation avec périodes multiples, et permettant l'ajustement dynamique des capacités, en particulier ceux avec des structures de coûts complexes. Nous étudions ces problèmes sous différents points de vue de recherche opérationnelle, en présentant et en comparant plusieurs modèles de programmation linéaire en nombres entiers (PLNE), l'évaluation de leur utilisation dans la pratique et en développant des algorithmes de résolution efficaces. Cette thèse est divisée en quatre parties. Tout d’abord, nous présentons le contexte industriel à l’origine de nos travaux: une compagnie forestière qui a besoin de localiser des campements pour accueillir les travailleurs forestiers. Nous présentons un modèle PLNE permettant la construction de nouveaux campements, l’extension, le déplacement et la fermeture temporaire partielle des campements existants. Ce modèle utilise des contraintes de capacité particulières, ainsi qu’une structure de coût à économie d’échelle sur plusieurs niveaux. L'utilité du modèle est évaluée par deux études de cas. La deuxième partie introduit le problème dynamique de localisation avec des capacités modulaires généralisées. Le modèle généralise plusieurs problèmes dynamiques de localisation et fournit de meilleures bornes de la relaxation linéaire que leurs formulations spécialisées. Le modèle peut résoudre des problèmes de localisation où les coûts pour les changements de capacité sont définis pour toutes les paires de niveaux de capacité, comme c'est le cas dans le problème industriel mentionnée ci-dessus. Il est appliqué à trois cas particuliers: l'expansion et la réduction des capacités, la fermeture temporaire des installations, et la combinaison des deux. Nous démontrons des relations de dominance entre notre formulation et les modèles existants pour les cas particuliers. Des expériences de calcul sur un grand nombre d’instances générées aléatoirement jusqu’à 100 installations et 1000 clients, montrent que notre modèle peut obtenir des solutions optimales plus rapidement que les formulations spécialisées existantes. Compte tenu de la complexité des modèles précédents pour les grandes instances, la troisième partie de la thèse propose des heuristiques lagrangiennes. Basées sur les méthodes du sous-gradient et des faisceaux, elles trouvent des solutions de bonne qualité même pour les instances de grande taille comportant jusqu’à 250 installations et 1000 clients. Nous améliorons ensuite la qualité de la solution obtenue en résolvent un modèle PLNE restreint qui tire parti des informations recueillies lors de la résolution du dual lagrangien. Les résultats des calculs montrent que les heuristiques donnent rapidement des solutions de bonne qualité, même pour les instances où les solveurs génériques ne trouvent pas de solutions réalisables. Finalement, nous adaptons les heuristiques précédentes pour résoudre le problème industriel. Deux relaxations différentes sont proposées et comparées. Des extensions des concepts précédents sont présentées afin d'assurer une résolution fiable en un temps raisonnable.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.
Resumo:
La thèse est divisée principalement en deux parties. La première partie regroupe les chapitres 2 et 3. La deuxième partie regroupe les chapitres 4 et 5. La première partie concerne l'échantillonnage de distributions continues non uniformes garantissant un niveau fixe de précision. Knuth et Yao démontrèrent en 1976 comment échantillonner exactement n'importe quelle distribution discrète en n'ayant recours qu'à une source de bits non biaisés indépendants et identiquement distribués. La première partie de cette thèse généralise en quelque sorte la théorie de Knuth et Yao aux distributions continues non uniformes, une fois la précision fixée. Une borne inférieure ainsi que des bornes supérieures pour des algorithmes génériques comme l'inversion et la discrétisation figurent parmi les résultats de cette première partie. De plus, une nouvelle preuve simple du résultat principal de l'article original de Knuth et Yao figure parmi les résultats de cette thèse. La deuxième partie concerne la résolution d'un problème en théorie de la complexité de la communication, un problème qui naquit avec l'avènement de l'informatique quantique. Étant donné une distribution discrète paramétrée par un vecteur réel de dimension N et un réseau de N ordinateurs ayant accès à une source de bits non biaisés indépendants et identiquement distribués où chaque ordinateur possède un et un seul des N paramètres, un protocole distribué est établi afin d'échantillonner exactement ladite distribution.
Resumo:
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel. Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment. Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique. Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive.