7 resultados para streamflow forecasts
em Université de Montréal, Canada
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
We study the workings of the factor analysis of high-dimensional data using artificial series generated from a large, multi-sector dynamic stochastic general equilibrium (DSGE) model. The objective is to use the DSGE model as a laboratory that allow us to shed some light on the practical benefits and limitations of using factor analysis techniques on economic data. We explain in what sense the artificial data can be thought of having a factor structure, study the theoretical and finite sample properties of the principal components estimates of the factor space, investigate the substantive reason(s) for the good performance of di¤usion index forecasts, and assess the quality of the factor analysis of highly dissagregated data. In all our exercises, we explain the precise relationship between the factors and the basic macroeconomic shocks postulated by the model.
Resumo:
Dans un bassin versant, la connectivité hydrologique constitue un état hydrologique qui lie le versant à la zone riveraine. Ses impacts sur la production du débit et le transfert des éléments dissous vers le cours d’eau sont présumés substantiels. L’étude vise à 1) détecter les hydrotopes et les connexions hydrologiques à l’aide d’un réseau de puits qui permet la mesure des fluctuations de la nappe phréatique (NP); 2) identifier la variabilité spatio-temporelle et la signature géochimique des sources potentielles en eau à l’aide des éléments majeurs et traces et 3) examiner la contribution spatio-temporelle respective des sources en eau du bassin lors d’un événement de précipitation. L’étude s’effectue dans un bassin versant forestier du Bouclier canadien (l’Hermine). Nous démontrons l’existence de quatre hydrotopes représentant un gradient de convergence de l’eau, soulignant la diversité de comportement de NP. Les connexions hydrologiques se caractérisent par des coefficients de Spearman élevés des relations entre la profondeur de la NP et le débit, dans leur partie en aval, et s’enclenchent par le fill and spill. Le comportement de NP est influencé par la distance aux limites du bassin, l’horizonation du sol et la topographie souterraine. En somme, trois sources en eau se connectent à partir du versant vers la zone riveraine durant l’événement pluvial de manière chronologique: 1) les horizons B et la NP de l’ensemble du bassin (Sr); 2) les horizons LFH des zones de convergence (Ba et Zn) et 3) une dépression de sol humide sur le versant nord (Co et Mn).
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.
Resumo:
Dans ce mémoire, nous proposons une méthodologie statistique permettant d’obtenir un estimateur de l’espérance de vie des clients en assurance. Les prédictions effectuées tiennent compte des caractéristiques individuelles des clients, notamment du fait qu’ils peuvent détenir différents types de produits d’assurance (automobile, résidentielle ou les deux). Trois approches sont comparées. La première approche est le modèle de Markov simple, qui suppose à la fois l’homogénéité et la stationnarité des probabilités de transition. L’autre modèle – qui a été implémenté par deux approches, soit une approche directe et une approche par simulations – tient compte de l’hétérogénéité des probabilités de transition, ce qui permet d’effectuer des prédictions qui évoluent avec les caractéristiques des individus dans le temps. Les probabilités de transition de ce modèle sont estimées par des régressions logistiques multinomiales.
Resumo:
Nous présentons dans cette thèse notre travail dans le domaine de la visualisation. Nous nous sommes intéressés au problème de la génération des bulletins météorologiques. Étant donné une masse énorme d’information générée par Environnement Canada et un utilisateur, il faut lui générer une visualisation personnalisée qui répond à ses besoins et à ses préférences. Nous avons développé MeteoVis, un générateur de bulletin météorologique. Comme nous avons peu d’information sur le profil de l’utilisateur, nous nous sommes basés sur les utilisateurs similaires pour lui calculer ses besoins et ses préférences. Nous utilisons l'apprentissage non supervisé pour regrouper les utilisateurs similaires. Nous calculons le taux de similarité des profils utilisateurs dans le même cluster pour pondérer les besoins et les préférences. Nous avons mené, avec l’aide d'utilisateurs n’ayant aucun rapport avec le projet, des expériences d'évaluation et de comparaison de notre outil par rapport à celui utilisé actuellement par Environnement Canada. Les résultats de cette évaluation montrent que les visualisation générées par MeteoVis sont de loin meilleures que les bulletins actuels préparés par EC.