4 resultados para serial method
em Université de Montréal, Canada
Resumo:
We o¤er an axiomatization of the serial cost-sharing method of Friedman and Moulin (1999). The key property in our axiom system is Group Demand Monotonicity, asking that when a group of agents raise their demands, not all of them should pay less.
Resumo:
A group of agents participate in a cooperative enterprise producing a single good. Each participant contributes a particular type of input; output is nondecreasing in these contributions. How should it be shared? We analyze the implications of the axiom of Group Monotonicity: if a group of agents simultaneously decrease their input contributions, not all of them should receive a higher share of output. We show that in combination with other more familiar axioms, this condition pins down a very small class of methods, which we dub nearly serial.
Resumo:
We propose two axiomatic theories of cost sharing with the common premise that agents demand comparable -though perhaps different- commodities and are responsible for their own demand. Under partial responsibility the agents are not responsible for the asymmetries of the cost function: two agents consuming the same amount of output always pay the same price; this holds true under full responsibility only if the cost function is symmetric in all individual demands. If the cost function is additively separable, each agent pays her stand alone cost under full responsibility; this holds true under partial responsibility only if, in addition, the cost function is symmetric. By generalizing Moulin and Shenker’s (1999) Distributivity axiom to cost-sharing methods for heterogeneous goods, we identify in each of our two theories a different serial method. The subsidy-free serial method (Moulin, 1995) is essentially the only distributive method meeting Ranking and Dummy. The cross-subsidizing serial method (Sprumont, 1998) is the only distributive method satisfying Separability and Strong Ranking. Finally, we propose an alternative characterization of the latter method based on a strengthening of Distributivity.
Resumo:
We survey recent axiomatic results in the theory of cost-sharing. In this litterature, a method computes the individual cost shares assigned to the users of a facility for any profile of demands and any monotonic cost function. We discuss two theories taking radically different views of the asymmetries of the cost function. In the full responsibility theory, each agent is accountable for the part of the costs that can be unambiguously separated and attributed to her own demand. In the partial responsibility theory, the asymmetries of the cost function have no bearing on individual cost shares, only the differences in demand levels matter. We describe several invariance and monotonicity properties that reflect both normative and strategic concerns. We uncover a number of logical trade-offs between our axioms, and derive axiomatic characterizations of a handful of intuitive methods: in the full responsibility approach, the Shapley-Shubik, Aumann-Shapley, and subsidyfree serial methods, and in the partial responsibility approach, the cross-subsidizing serial method and the family of quasi-proportional methods.