4 resultados para rigorous results in statistical mechanics
em Université de Montréal, Canada
Resumo:
Affiliation: Institut de recherche en immunologie et en cancérologie, Université de Montréal
Resumo:
Cette thèse porte sur le rôle de l’espace dans l’organisation et dans la dynamique des communautés écologiques multi-espèces. Deux carences peuvent être identifiées dans les études théoriques actuelles portant sur la dimension spatiale des communautés écologiques : l’insuffisance de modèles multi-espèces représentant la dimension spatiale explicitement, et le manque d’attention portée aux interactions positives, tel le mutualisme, en dépit de la reconnaissance de leur ubiquité dans les systèmes écologiques. Cette thèse explore cette problématique propre à l’écologie des communautés, en utilisant une approche théorique s’inspirant de la théorie des systèmes complexes et de la mécanique statistique. Selon cette approche, les communautés d’espèces sont considérées comme des systèmes complexes dont les propriétés globales émergent des interactions locales entre les organismes qui les composent, et des interactions locales entre ces organismes et leur environnement. Le premier objectif de cette thèse est de développer un modèle de métacommunauté multi-espèces, explicitement spatial, orienté à l’échelle des individus et basé sur un réseau d’interactions interspécifiques générales comprenant à la fois des interactions d’exploitation, de compétition et de mutualisme. Dans ce modèle, les communautés locales sont formées par un processus d’assemblage des espèces à partir d’un réservoir régional. La croissance des populations est restreinte par une capacité limite et leur dynamique évolue suivant des mécanismes simples de reproduction et de dispersion des individus. Ces mécanismes sont dépendants des conditions biotiques et abiotiques des communautés locales et leur effet varie en fonction des espèces, du temps et de l’espace. Dans un deuxième temps, cette thèse a pour objectif de déterminer l’impact d’une connectivité spatiale croissante sur la dynamique spatiotemporelle et sur les propriétés structurelles et fonctionnelles de cette métacommunauté. Plus précisément, nous évaluons différentes propriétés des communautés en fonction du niveau de dispersion des espèces : i) la similarité dans la composition des communautés locales et ses patrons de corrélations spatiales; ii) la biodiversité locale et régionale, et la distribution locale de l’abondance des espèces; iii) la biomasse, la productivité et la stabilité dynamique aux échelles locale et régionale; et iv) la structure locale des interactions entre les espèces. Ces propriétés sont examinées selon deux schémas spatiaux. D’abord nous employons un environnement homogène et ensuite nous employons un environnement hétérogène où la capacité limite des communautés locales évoluent suivant un gradient. De façon générale, nos résultats révèlent que les communautés écologiques spatialement distribuées sont extrêmement sensibles aux modes et aux niveaux de dispersion des organismes. Leur dynamique spatiotemporelle et leurs propriétés structurelles et fonctionnelles peuvent subir des changements profonds sous forme de transitions significatives suivant une faible variation du niveau de dispersion. Ces changements apparaissent aussi par l’émergence de patrons spatiotemporels dans la distribution spatiale des populations qui sont typiques des transitions de phases observées généralement dans les systèmes physiques. La dynamique de la métacommunauté présente deux régimes. Dans le premier régime, correspondant aux niveaux faibles de dispersion des espèces, la dynamique d’assemblage favorise l’émergence de communautés stables, peu diverses et formées d’espèces abondantes et fortement mutualistes. La métacommunauté possède une forte diversité régionale puisque les communautés locales sont faiblement connectées et que leur composition demeure ainsi distincte. Par ailleurs dans le second régime, correspondant aux niveaux élevés de dispersion, la diversité régionale diminue au profit d’une augmentation de la diversité locale. Les communautés locales sont plus productives mais leur stabilité dynamique est réduite suite à la migration importante d’individus. Ce régime est aussi caractérisé par des assemblages incluant une plus grande diversité d’interactions interspécifiques. Ces résultats suggèrent qu’une augmentation du niveau de dispersion des organismes permet de coupler les communautés locales entre elles ce qui accroît la coexistence locale et favorise la formation de communautés écologiques plus riches et plus complexes. Finalement, notre étude suggère que le mutualisme est fondamentale à l’organisation et au maintient des communautés écologiques. Les espèces mutualistes dominent dans les habitats caractérisés par une capacité limite restreinte et servent d’ingénieurs écologiques en facilitant l’établissement de compétiteurs, prédateurs et opportunistes qui bénéficient de leur présence.
Resumo:
Introduction: Le gène O6-méthylguanine-ADN méthyltransferase (MGMT) code pour une enzyme spécifique réparatrice de l’ADN qui protège les cellules de la toxicité des agents alkylants. Ainsi, l’activité du MGMT est un mécanisme majeur de résistance aux agents alkylants. Il a été démontré qu’une diminution de l’expression du gène MGMT par une hyperméthylation du promoteur résulte en une amélioration de la survie chez les patients avec certains types de tumeurs qui sont traitées avec des agents chimiothérapeuthique alkylants. Objectifs: Déterminer la prévalence de la méthylation du gène MGMT chez des patients avec des cancers épidermoïdes localement avancés de la sphère ORL traités avec chimioradiothérapie et évaluer l’impact de cette méthylation sur la survie. Méthodes: Sur 428 patients consécutifs, traités avec chimioradiothérapie à notre institution et suivis pour un période médiane de 37 mois, 199 spécimens chirurgicaux paraffinés ont été récupérés. L’ADN était extrait et modifié par le traitement au bisulfite. Une réaction en chaîne de la polymérase, spécifique à la méthylation était entreprise pour évaluer l’état de méthylation du promoteur du gène du MGMT. Les résultats de laboratoire étaient corrélés avec la réponse clinique. L’analyse statistique était exécutée à l’aide du test de Fisher pour les données catégoriques et à l’aide des courbes de Kaplan-Meier pour les échecs au traitement. Résultats : Des 199 extraits d’ADN initiaux, 173 (87%) étaient modifiés au bisulfite avec succès. Des ces spécimens modifiés, 71 (41%) ont démontré une hyperméthylation du MGMT. Pour les cas de méthylation et nonméthylation du MGMT, les caractéristiques des patients n’étaient pas significativement différentes. Les taux de réponse étaient 71 et 73% (p=NS) respectivement. Le contrôle locorégional était respectivement 87 et 77% (p=0.26), la survie sans maladie était 80 et 60% (p=0.38), la survie sans métastase à distance était 92 et 78% (p=0.08) et la survie globale était 64 et 62% (p=0.99) à 3 ans. Conclusions : L’état de méthylation du MGMT est fortement prévalent (41%) et semble avoir un possible impact bénéfique sur la survie quand la chimioradiothérapie est administrée aux patients avec des stades avancés de cancers tête et cou.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.