5 resultados para random search algorithms

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes and investigates a metaheuristic tabu search algorithm (TSA) that generates optimal or near optimal solutions sequences for the feedback length minimization problem (FLMP) associated to a design structure matrix (DSM). The FLMP is a non-linear combinatorial optimization problem, belonging to the NP-hard class, and therefore finding an exact optimal solution is very hard and time consuming, especially on medium and large problem instances. First, we introduce the subject and provide a review of the related literature and problem definitions. Using the tabu search method (TSM) paradigm, this paper presents a new tabu search algorithm that generates optimal or sub-optimal solutions for the feedback length minimization problem, using two different neighborhoods based on swaps of two activities and shifting an activity to a different position. Furthermore, this paper includes numerical results for analyzing the performance of the proposed TSA and for fixing the proper values of its parameters. Then we compare our results on benchmarked problems with those already published in the literature. We conclude that the proposed tabu search algorithm is very promising because it outperforms the existing methods, and because no other tabu search method for the FLMP is reported in the literature. The proposed tabu search algorithm applied to the process layer of the multidimensional design structure matrices proves to be a key optimization method for an optimal product development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le problème de localisation-routage avec capacités (PLRC) apparaît comme un problème clé dans la conception de réseaux de distribution de marchandises. Il généralisele problème de localisation avec capacités (PLC) ainsi que le problème de tournées de véhicules à multiples dépôts (PTVMD), le premier en ajoutant des décisions liées au routage et le deuxième en ajoutant des décisions liées à la localisation des dépôts. Dans cette thèse on dévelope des outils pour résoudre le PLRC à l’aide de la programmation mathématique. Dans le chapitre 3, on introduit trois nouveaux modèles pour le PLRC basés sur des flots de véhicules et des flots de commodités, et on montre comment ceux-ci dominent, en termes de la qualité de la borne inférieure, la formulation originale à deux indices [19]. Des nouvelles inégalités valides ont été dévelopées et ajoutées aux modèles, de même que des inégalités connues. De nouveaux algorithmes de séparation ont aussi été dévelopés qui dans la plupart de cas généralisent ceux trouvés dans la litterature. Les résultats numériques montrent que ces modèles de flot sont en fait utiles pour résoudre des instances de petite à moyenne taille. Dans le chapitre 4, on présente une nouvelle méthode de génération de colonnes basée sur une formulation de partition d’ensemble. Le sous-problème consiste en un problème de plus court chemin avec capacités (PCCC). En particulier, on utilise une relaxation de ce problème dans laquelle il est possible de produire des routes avec des cycles de longueur trois ou plus. Ceci est complété par des nouvelles coupes qui permettent de réduire encore davantage le saut d’intégralité en même temps que de défavoriser l’apparition de cycles dans les routes. Ces résultats suggèrent que cette méthode fournit la meilleure méthode exacte pour le PLRC. Dans le chapitre 5, on introduit une nouvelle méthode heuristique pour le PLRC. Premièrement, on démarre une méthode randomisée de type GRASP pour trouver un premier ensemble de solutions de bonne qualité. Les solutions de cet ensemble sont alors combinées de façon à les améliorer. Finalement, on démarre une méthode de type détruir et réparer basée sur la résolution d’un nouveau modèle de localisation et réaffectation qui généralise le problème de réaffectaction [48].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.