15 resultados para indivisible objects
em Université de Montréal, Canada
Resumo:
We consider a probabilistic approach to the problem of assigning k indivisible identical objects to a set of agents with single-peaked preferences. Using the ordinal extension of preferences, we characterize the class of uniform probabilistic rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in this characterization no-envy cannot be replaced by anonymity. When agents are strictly risk averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of assigning k identical objects to a problem of allocating the amount k of an infinitely divisible commodity.
Resumo:
We study the assignment of indivisible objects with quotas (houses, jobs, or offices) to a set of agents (students, job applicants, or professors). Each agent receives at most one object and monetary compensations are not possible. We characterize efficient priority rules by efficiency, strategy-proofness, and reallocation-consistency. Such a rule respects an acyclical priority structure and the allocations can be determined using the deferred acceptance algorithm.
Resumo:
We study a simple model of assigning indivisible objects (e.g., houses, jobs, offices, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We completely describe all rules satisfying efficiency and resource-monotonicity. The characterized rules assign the objects in a sequence of steps such that at each step there is either a dictator or two agents who “trade” objects from their hierarchically specified “endowments.”
Resumo:
In practice we often face the problem of assigning indivisible objects (e.g., schools, housing, jobs, offices) to agents (e.g., students, homeless, workers, professors) when monetary compensations are not possible. We show that a rule that satisfies consistency, strategy-proofness, and efficiency must be an efficient generalized priority rule; i.e. it must adapt to an acyclic priority structure, except -maybe- for up to three agents in each object's priority ordering.
Resumo:
In many economic environments - such as college admissions, student placements at public schools, and university housing allocation - indivisible objects with capacity constraints are assigned to a set of agents when each agent receives at most one object and monetary compensations are not allowed. In these important applications the agent-proposing deferred-acceptance algorithm with responsive priorities (called responsive DA-rule) performs well and economists have successfully implemented responsive DA-rules or slight variants thereof. First, for house allocation problems we characterize the class of responsive DA-rules by a set of basic and intuitive properties, namely, unavailable type invariance, individual rationality, weak non-wastefulness, resource-monotonicity, truncation invariance, and strategy-proofness. We extend this characterization to the full class of allocation problems with capacity constraints by replacing resource- monotonicity with two-agent consistent con ict resolution. An alternative characterization of responsive DA-rules is obtained using unassigned objects invariance, individual rationality, weak non-wastefulness, weak consistency, and strategy-proofness. Various characterizations of the class of "acyclic" responsive DA-rules are obtained by using the properties efficiency, group strategy-proofness, and consistency.
Resumo:
A common real-life problem is to fairly allocate a number of indivisible objects and a fixed amount of money among a group of agents. Fairness requires that each agent weakly prefers his consumption bundle to any other agent’s bundle. Under fairness, efficiency is equivalent to budget-balance (all the available money is allocated among the agents). Budget-balance and fairness in general are incompatible with non-manipulability (Green and Laffont, 1979). We propose a new notion of the degree of manipulability which can be used to compare the ease of manipulation in allocation mechanisms. Our measure counts for each problem the number of agents who can manipulate the rule. Given this notion, the main result demonstrates that maximally linked fair allocation rules are the minimally manipulable rules among all budget-balanced and fair allocation mechanisms. Such rules link any agent to the bundle of a pre-selected agent through indifferences (which can be viewed as indirect egalitarian equivalence).
(Minimally) 'epsilon'-incentive compatible competitive equilibria in economies with indivisibilities
Resumo:
We consider competitive and budget-balanced allocation rules for problems where a number of indivisible objects and a fixed amount of money is allocated among a group of agents. In 'small' economies, we identify under classical preferences each agent's maximal gain from manipulation. Using this result we find the competitive and budget-balanced allocation rules which are minimally manipulable for each preference profile in terms of any agent's maximal gain. If preferences are quasi-linear, then we can find a competitive and budget-balanced allocation rule such that for any problem, the maximal utility gain from manipulation is equalized among all agents.
Resumo:
In college admissions and student placements at public schools, the admission decision can be thought of as assigning indivisible objects with capacity constraints to a set of students such that each student receives at most one object and monetary compensations are not allowed. In these important market design problems, the agent-proposing deferred-acceptance (DA-)mechanism with responsive strict priorities performs well and economists have successfully implemented DA-mechanisms or slight variants thereof. We show that almost all real-life mechanisms used in such environments - including the large classes of priority mechanisms and linear programming mechanisms - satisfy a set of simple and intuitive properties. Once we add strategy-proofness to these properties, DA-mechanisms are the only ones surviving. In market design problems that are based on weak priorities (like school choice), generally multiple tie-breaking (MTB)procedures are used and then a mechanism is implemented with the obtained strict priorities. By adding stability with respect to the weak priorities, we establish the first normative foundation for MTB-DA-mechanisms that are used in NYC.
Resumo:
We study the simple model of assigning indivisible and heterogenous objects (e.g., houses, jobs, offi ces, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. For this model, known as the house allocation model, we characterize the class of rules satisfying unavailable object invariance, individual rationality, weak non-wastefulness, resource-monotonicity, truncation invariance, and strategy-proofness: any rule with these properties must allocate objects based on (implicitly induced) objects' priorities over agents and the agent-proposing deferred-acceptance-algorithm.
Resumo:
We study markets with indivisible goods where monetary compensations are not possible. Each individual is endowed with an object and a preference relation over all objects. When preferences are strict, Gale's top trading cycle algorithm finds the unique core allocation. When preferences are not necessarily strict, we use an exogenous profile of tie-breakers to resolve any ties in individuals' preferences and apply Gale's top trading cycle algorithm for the resulting profile of strict preferences. We provide a foundation of these simple extensions of Gale's top trading cycle algorithm from strict preferences to weak preferences. We show that Gale's top trading cycle algorithm with fixed tie-breaking is characterized by individual rationality, strategy-proofness, weak efficiency, non-bossiness, and consistency. Our result supports the common practice in applications to break ties in weak preferences using some fixed exogenous criteria and then to use a 'good and simple' rule for the resulting strict preferences. This reinforces the market-based approach even in the presence of indifferences because always competitive allocations are chosen.
Resumo:
We provide a survey of the literature on ranking sets of objects. The interpretations of those set rankings include those employed in the theory of choice under complete uncertainty, rankings of opportunity sets, set rankings that appear in matching theory, and the structure of assembly preferences. The survey is prepared for the Handbook of Utility Theory, vol. 2, edited by Salvador Barberà, Peter Hammond, and Christian Seidl, to be published by Kluwer Academic Publishers. The chapter number is provisional.
Resumo:
McCausland (2004a) describes a new theory of random consumer demand. Theoretically consistent random demand can be represented by a \"regular\" \"L-utility\" function on the consumption set X. The present paper is about Bayesian inference for regular L-utility functions. We express prior and posterior uncertainty in terms of distributions over the indefinite-dimensional parameter set of a flexible functional form. We propose a class of proper priors on the parameter set. The priors are flexible, in the sense that they put positive probability in the neighborhood of any L-utility function that is regular on a large subset bar(X) of X; and regular, in the sense that they assign zero probability to the set of L-utility functions that are irregular on bar(X). We propose methods of Bayesian inference for an environment with indivisible goods, leaving the more difficult case of indefinitely divisible goods for another paper. We analyse individual choice data from a consumer experiment described in Harbaugh et al. (2001).
Resumo:
PériCulture est le nom d'un projet de recherche à l'Université de Montréal qui fait partie d'un projet plus vaste basé à l'Université de Sherbrooke. Ce dernier visait à former un réseau de recherche pour la gestion du contenu culturel numérique canadien. L'objectif général de la recherche de PériCulture était d'étudier les méthodes d'indexation de contenus culturels non textuels sur le Web, plus spécifiquement des images. Les résultats de la recherche présentés ici s'appuient sur des travaux précédents en indexation d'images et en indexation automatique (de texte), par l'étude des propriétés du texte associé à des images dans un environnement réseau. Le but était de comprendre la façon dont le texte associé à des images sur des pages Web (appelé péritexte) peut être exploité pour indexer les images correspondantes. Nous avons étudié cette question dans le contexte de pages Web sélectionnées, c'est à dire : des pages de contenu culturel canadien contenant des objets multimédia auxquels était associé du texte (plus que simplement les noms de fichiers et les légendes) et qui étaient bilingues (anglais et français). Nous avons identifié les mots-clés utiles à l'indexation situés à proximité de l'objet décrit. Les termes d'indexation potentiels ont été identifiés dans diverses balises HTML et dans le texte intégral (chacun étant considéré comme une source différente de péritexte). Notre étude a révélé qu'un grand nombre de termes d'indexation utiles sont disponibles dans le péritexte de nombreux sites Web ayant un contenu culturel, et ce péritexte de différentes sources a une utilité variable dans la recherche d’information. Nos résultats suggèrent que ces termes peuvent être exploités de différentes manières dans les systèmes de recherche d’information pour améliorer les résultats de recherche.
Resumo:
Compte-rendu / Review
Resumo:
We study the problem of assigning indivisible and heterogenous objects (e.g., houses, jobs, offices, school or university admissions etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We consider mechanisms satisfying a set of basic properties (unavailable-type-invariance, individual-rationality, weak non-wastefulness, or truncation-invariance). In the house allocation problem, where at most one copy of each object is available, deferred-acceptance (DA)-mechanisms allocate objects based on exogenously fixed objects' priorities over agents and the agent-proposing deferred-acceptance-algorithm. For house allocation we show that DA-mechanisms are characterized by our basic properties and (i) strategy-proofness and population-monotonicity or (ii) strategy-proofness and resource-monotonicity. Once we allow for multiple identical copies of objects, on the one hand the first characterization breaks down and there are unstable mechanisms satisfying our basic properties and (i) strategy-proofness and population-monotonicity. On the other hand, our basic properties and (ii) strategy-proofness and resource-monotonicity characterize (the most general) class of DA-mechanisms based on objects' fixed choice functions that are acceptant, monotonic, substitutable, and consistent. These choice functions are used by objects to reject agents in the agent-proposing deferred-acceptance-algorithm. Therefore, in the general model resource-monotonicity is the «stronger» comparative statics requirement because it characterizes (together with our basic requirements and strategy-proofness) choice-based DA-mechanisms whereas population-monotonicity (together with our basic properties and strategy-proofness) does not.