17 resultados para differential equations

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We provide a theoretical framework to explain the empirical finding that the estimated betas are sensitive to the sampling interval even when using continuously compounded returns. We suppose that stock prices have both permanent and transitory components. The permanent component is a standard geometric Brownian motion while the transitory component is a stationary Ornstein-Uhlenbeck process. The discrete time representation of the beta depends on the sampling interval and two components labelled \"permanent and transitory betas\". We show that if no transitory component is present in stock prices, then no sampling interval effect occurs. However, the presence of a transitory component implies that the beta is an increasing (decreasing) function of the sampling interval for more (less) risky assets. In our framework, assets are labelled risky if their \"permanent beta\" is greater than their \"transitory beta\" and vice versa for less risky assets. Simulations show that our theoretical results provide good approximations for the means and standard deviations of estimated betas in small samples. Our results can be perceived as indirect evidence for the presence of a transitory component in stock prices, as proposed by Fama and French (1988) and Poterba and Summers (1988).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa- tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer- taines conditions aux limites. Dans le chapitre trois, nous introduirons une notion de tube-solution pour obtenir des théorèmes d’existence pour des systèmes d’équations différentielles du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de sous- et sur-solutions pour le problème aux limites de l’équation différentielle du troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois- sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34]. Le chapitre suivant porte sur l’existence de solutions pour deux types de sys- tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis- tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes et à une échelle de temps quelconque, un résultat obtenu pour des équations aux différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte- nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60]. Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in- clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore une fois à l’aide d’une hypothèse de tube-solution adaptée au problème. Au chapitre six, nous traitons l’existence de solutions pour des systèmes d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse que ces auteurs utilisent pour faire la majoration a priori est un cas particulier de notre hypothèse de tube-solution pour ce type de systèmes. Notons également que notre définition de tube-solution généralise aux systèmes les notions de sous- et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi, nous généralisons également des résultats obtenus pour des équations aux échelles de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis- tence pour un système dont le membre droit des équations dépend de la ∆-dérivée de la fonction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous investiguons dans ce travail la dynamique des excitons dans une couche mince d’agrégats H autoassemblés hélicoïdaux de molécules de sexithiophène. Le couplage intermoléculaire (J=100 meV) place ce matériau dans la catégorie des semi-conducteurs à couplage de type intermédiaire. Le désordre énergétique et la forte interaction électronsphonons causent une forte localisation des excitons. Les espèces initiales se ramifient en deux états distincts : un état d’excitons autopiégés (rendement de 95 %) et un état à transfert de charge (rendement de 5%). À température de la pièce (293K), les processus de sauts intermoléculaires sont activés et l’anisotropie de la fluorescence décroît rapidement à zéro en 5 ns. À basse température (14K), les processus de sauts sont gelés. Pour caractériser la dynamique de diffusion des espèces, une expérience d’anisotropie de fluorescence a été effectuée. Celle-ci consiste à mesurer la différence entre la photoluminescence polarisée parallèlement au laser excitateur et celle polarisée perpendiculairement, en fonction du temps. Cette mesure nous donne de l’information sur la dépolarisation des excitons, qui est directement reliée à leur diffusion dans la structure supramoléculaire. On mesure une anisotropie de 0,1 après 20 ns qui perdure jusqu’à 50ns. Les états à transfert de charge causent une remontée de l’anisotropie vers une valeur de 0,15 sur une plage temporelle allant de 50 ns jusqu’à 210 ns (période entre les impulsions laser). Ces résultats démontrent que la localisation des porteurs est très grande à 14K, et qu’elle est supérieure pour les espèces à transfert de charge. Un modèle numérique simple d’équations différentielles à temps de vie radiatif et de dépolarisation constants permet de reproduire les données expérimentales. Ce modèle a toutefois ses limitations, notamment en ce qui a trait aux mécanismes de dépolarisation des excitons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce travail présente une technique de simulation de feux de forêt qui utilise la méthode Level-Set. On utilise une équation aux dérivées partielles pour déformer une surface sur laquelle est imbriqué notre front de flamme. Les bases mathématiques de la méthode Level-set sont présentées. On explique ensuite une méthode de réinitialisation permettant de traiter de manière robuste des données réelles et de diminuer le temps de calcul. On étudie ensuite l’effet de la présence d’obstacles dans le domaine de propagation du feu. Finalement, la question de la recherche du point d’ignition d’un incendie est abordée.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'insuffisance cardiaque est une maladie à grande incidence dont le traitement définitif est difficile. Les pompes d'assistance ventriculaire ont été proposées comme thérapie alternative à long terme, mais la technologie est relativement jeune et selon son design, axial ou centrifuge, le dispositif favorise soit l'hémolyse, soit la stagnation de l'écoulement sanguin. Les pompes à écoulement mixte, combinant certaines propriétés des deux types, ont été proposées comme solution intermédiaire. Pour évaluer leurs performances, nous avons effectué des comparaisons numériques entre huit pompes, deux axiales, deux centrifuges, et quatre mixtes, en employant un modèle Windkessel du système cardiovasculaire avec paramètres optimisés pour l'insuffisance cardiaque résolu avec une méthode Radau IIA3, une méthode de résolution de système d'équations différentielles ordinaires L-stable appartenant à la famille des méthodes Runge-Kutta implicites. Nos résultats semblent suggérer que les pompes d'assistance mixtes ne démontrent qu'un léger avantage comparativement aux autres types en terme de performance optimale dans le cas de l'insuffisance cardiaque, mais il faudrait effectuer plus d'essais numériques avec un modèle plus complet, entre autres avec contrôles nerveux implémentés.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nous considérons des processus de diffusion, définis par des équations différentielles stochastiques, et puis nous nous intéressons à des problèmes de premier passage pour les chaînes de Markov en temps discret correspon- dant à ces processus de diffusion. Comme il est connu dans la littérature, ces chaînes convergent en loi vers la solution des équations différentielles stochas- tiques considérées. Notre contribution consiste à trouver des formules expli- cites pour la probabilité de premier passage et la durée de la partie pour ces chaînes de Markov à temps discret. Nous montrons aussi que les résultats ob- tenus convergent selon la métrique euclidienne (i.e topologie euclidienne) vers les quantités correspondantes pour les processus de diffusion. En dernier lieu, nous étudions un problème de commande optimale pour des chaînes de Markov en temps discret. L’objectif est de trouver la valeur qui mi- nimise l’espérance mathématique d’une certaine fonction de coût. Contraire- ment au cas continu, il n’existe pas de formule explicite pour cette valeur op- timale dans le cas discret. Ainsi, nous avons étudié dans cette thèse quelques cas particuliers pour lesquels nous avons trouvé cette valeur optimale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce document traite premièrement des diverses tentatives de modélisation et de simulation de la nage anguilliforme puis élabore une nouvelle technique, basée sur la méthode de la frontière immergée généralisée et la théorie des poutres de Reissner-Simo. Cette dernière, comme les équations des fluides polaires, est dérivée de la mécanique des milieux continus puis les équations obtenues sont discrétisées afin de les amener à une résolution numérique. Pour la première fois, la théorie des schémas de Runge-Kutta additifs est combinée à celle des schémas de Runge-Kutta-Munthe-Kaas pour engendrer une méthode d’ordre de convergence formel arbitraire. De plus, les opérations d’interpolation et d’étalement sont traitées d’un nouveau point de vue qui suggère l’usage des splines interpolatoires nodales en lieu et place des fonctions d’étalement traditionnelles. Enfin, de nombreuses vérifications numériques sont faites avant de considérer les simulations de la nage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Un modèle mathématique de la propagation de la malaria en temps discret est élaboré en vue de déterminer l'influence qu'un déplacement des populations des zones rurales vers les zones urbaines aurait sur la persistance ou la diminution de l'incidence de la malaria. Ce modèle, sous la forme d'un système de quatorze équations aux différences finies, est ensuite comparé à un modèle analogue mais en temps continu, qui prend la forme d'équations différentielles ordinaires. Une étude comparative avec la littérature récente permet de déterminer les forces et les faiblesses de notre modèle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.