48 resultados para binary choice
em Université de Montréal, Canada
Resumo:
We analyze an alternative to the standard rationalizability requirement for observed choices by considering non-deteriorating selections. A selection function is a generalization of a choice function where selected alternatives may depend on a reference (or status quo) alternative in addition to the set of feasible options. A selection function is non-deteriorating if there exists an ordering over the universal set of alternatives such that the selected alternatives are at least as good as the reference option. We characterize non-deteriorating selection functions in an abstract framework and in an economic environment.
Resumo:
The rationalizability of a choice function by means of a transitive relation has been analyzed thoroughly in the literature. However, not much seems to be known when transitivity is weakened to quasi-transitivity or acyclicity. We describe the logical relationships between the different notions of rationalizability involving, for example, the transitivity, quasi-transitivity, or acyclicity of the rationalizing relation. Furthermore, we discuss sufficient conditions and necessary conditions for rational choice on arbitrary domains. Transitive, quasi-transitive, and acyclical rationalizability are fully characterized for domains that contain all singletons and all two-element subsets of the universal set.
Resumo:
Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.
Resumo:
We analyze collective choice procedures with respect to their rationalizability by means of profiles of individual preference orderings. A selection function is a generalization of a choice function where selected alternatives may depend on a reference (or status quo) alternative in addition to the set of feasible options. Given the number of agents n, a selection function satisfies efficient and non-deteriorating n-rationalizability if there exists a profile of n orderings on the universal set of alternatives such that the selected alternatives are (i) efficient for that profile, and (ii) at least as good as the reference option according to each individual preference. We analyze efficient and non-deteriorating collective choice in a general abstract framework and provide a characterization result given a universal set domain.
Resumo:
Consistency of a binary relation requires any preference cycle to involve indifference only. As shown by Suzumura (1976b), consistency is necessary and sufficient for the existence of an ordering extension of a relation. Because of this important role of consistency, it is of interest to examine the rationalizability of choice functions by means of consistent relations. We describe the logical relationships between the different notions of rationalizability obtained if reflexivity or completeness are added to consistency, both for greatest-element rationalizability and for maximal-element rationalizability. All but one notion of consistent rationalizability are characterized for general domains, and all of them are characterized for domains that contain all two-element subsets of the universal set.
Resumo:
A desirable property of a voting procedure is that it be immune to the strategic withdrawal of a candidate for election. Dutta, Jackson, and Le Breton (Econometrica, 2001) have established a number of theorems that demonstrate that this condition is incompatible with some other desirable properties of voting procedures. This article shows that Grether and Plott's nonbinary generalization of Arrow's Theorem can be used to provide simple proofs of two of these impossibility theorems.
Resumo:
It Has Often Been Assumed That a Country's Tax Level, Tax Structure Progressivity and After-Tax Income Distribution Are Chosen by Voters Subject Only to Their Budget Constraints. This Paper Argues That At Certain Income Levels Voters' Decisions May Be Constrained by Bureaucratic Corruption. the Theoretical Arguments Are Developed in Asymmetry Limits the Capacity of the Fiscal System to Generate Revenues by Means of Direct Taxes. This Hypothesis Is Tested Witha Sample of International Data by Means of a Simultaneous Equation Model. the Distortions Resulting From Corruption Ar Captured Through Their Effects on a Latent Variable Defined As the Overall Fiscal Structure. Evidence Is Found of Causality Running From This Latent Variable to the Level of Taxes and the Degree of After Tax Inequality.
Resumo:
This paper presents a new theory of random consumer demand. The primitive is a collection of probability distributions, rather than a binary preference. Various assumptions constrain these distributions, including analogues of common assumptions about preferences such as transitivity, monotonicity and convexity. Two results establish a complete representation of theoretically consistent random demand. The purpose of this theory of random consumer demand is application to empirical consumer demand problems. To this end, the theory has several desirable properties. It is intrinsically stochastic, so the econometrician can apply it directly without adding extrinsic randomness in the form of residuals. Random demand is parsimoniously represented by a single function on the consumption set. Finally, we have a practical method for statistical inference based on the theory, described in McCausland (2004), a companion paper.
Resumo:
The paper investigates competition in price schedules among vertically differentiated dupolists. First order price discrimination is the unique Nash equilibrium of a sequential game in which firms determine first whether or not to commit to a uniform price, and then simultaneously choose either a single price of a price schedule. Whether the profits earned by both firms are larger or smaller under discrimination than under uniform pricing depends on the quality gap between firms, and on the disparity of consumer preferences. Firms engaged in first degree discrimination choose quality levels that are optimal from a welfare perspective. The paper also reflects on implications of these findings for pricing policies of an incumbent threatened by entry.
Resumo:
The rationalizability of a choice function on arbitrary domains by means of a transitive relation has been analyzed thoroughly in the literature. Moreover, characterizations of various versions of consistent rationalizability have appeared in recent contributions. However, not much seems to be known when the coherence property of quasi-transitivity or that of P-acyclicity is imposed on a rationalization. The purpose of this paper is to fill this significant gap. We provide characterizations of all forms of rationalizability involving quasi-transitive or P-acyclical rationalizations on arbitrary domains.
Resumo:
The rationalizability of a choice function on an arbitrary domain under various coherence properties has received a considerable amount of attention both in the long-established and in the recent literature. Because domain closedness conditions play an important role in much of rational choice theory, we examine the consequences of these requirements on the logical relationships among different versions of rationalizability. It turns out that closedness under intersection does not lead to any results differing from those obtained on arbitrary domains. In contrast, closedness under union allows us to prove an additional implication.
Resumo:
In the past quarter century, there has been a dramatic shift of focus in social choice theory, with structured sets of alternatives and restricted domains of the sort encountered in economic problems coming to the fore. This article provides an overview of some of the recent contributions to four topics in normative social choice theory in which economic modelling has played a prominent role: Arrovian social choice theory on economic domains, variable-population social choice, strategy-proof social choice, and axiomatic models of resource allocation.