17 resultados para Vapor sample
em Université de Montréal, Canada
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
Ce Texte Presente Plusieurs Resultats Exacts Sur les Seconds Moments des Autocorrelations Echantillonnales, Pour des Series Gaussiennes Ou Non-Gaussiennes. Nous Donnons D'abord des Formules Generales Pour la Moyenne, la Variance et les Covariances des Autocorrelations Echantillonnales, Dans le Cas Ou les Variables de la Serie Sont Interchangeables. Nous Deduisons de Celles-Ci des Bornes Pour les Variances et les Covariances des Autocorrelations Echantillonnales. Ces Bornes Sont Utilisees Pour Obtenir des Limites Exactes Sur les Points Critiques Lorsqu'on Teste le Caractere Aleatoire D'une Serie Chronologique, Sans Qu'aucune Hypothese Soit Necessaire Sur la Forme de la Distribution Sous-Jacente. Nous Donnons des Formules Exactes et Explicites Pour les Variances et Covariances des Autocorrelations Dans le Cas Ou la Serie Est un Bruit Blanc Gaussien. Nous Montrons Que Ces Resultats Sont Aussi Valides Lorsque la Distribution de la Serie Est Spheriquement Symetrique. Nous Presentons les Resultats D'une Simulation Qui Indiquent Clairement Qu'on Approxime Beaucoup Mieux la Distribution des Autocorrelations Echantillonnales En Normalisant Celles-Ci Avec la Moyenne et la Variance Exactes et En Utilisant la Loi N(0,1) Asymptotique, Plutot Qu'en Employant les Seconds Moments Approximatifs Couramment En Usage. Nous Etudions Aussi les Variances et Covariances Exactes D'autocorrelations Basees Sur les Rangs des Observations.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
La fumée du tabac est un aérosol extrêmement complexe constitué de milliers de composés répartis entre la phase particulaire et la phase vapeur. Il a été démontré que les effets toxicologiques de cette fumée sont associés aux composés appartenant aux deux phases. Plusieurs composés biologiquement actifs ont été identifiés dans la fumée du tabac; cependant, il n’y a pas d’études démontrant la relation entre les réponses biologiques obtenues via les tests in vitro ou in vivo et les composés présents dans la fumée entière du tabac. Le but de la présente recherche est de développer des méthodes fiables et robustes de fractionnement de la fumée à l’aide de techniques de séparation analytique et de techniques de détection combinés à des essais in vitro toxicologiques. Une étude antérieure réalisée par nos collaborateurs a démontré que, suite à l’étude des produits de combustion de douze principaux composés du tabac, l’acide chlorogénique s’est avéré être le composé le plus cytotoxique selon les test in vitro du micronoyau. Ainsi, dans cette étude, une méthode par chromatographie préparative en phase liquide a été développée dans le but de fractionner les produits de combustion de l’acide chlorogénique. Les fractions des produits de combustion de l’acide chlorogénique ont ensuite été testées et les composés responsables de la toxicité de l’acide chlorogénique ont été identifiés. Le composé de la sous-fraction responsable en majeure partie de la cytoxicité a été identifié comme étant le catéchol, lequel fut confirmé par chromatographie en phase liquide/ spectrométrie de masse à temps de vol. Des études récentes ont démontré les effets toxicologiques de la fumée entière du tabac et l’implication spécifique de la phase vapeur. C’est pourquoi notre travail a ensuite été focalisé principalement à l’analyse de la fumée entière. La machine à fumer Borgwaldt RM20S® utilisée avec les chambres d’exposition cellulaire de British American Tobacco permettent l’étude in vitro de l’exposition de cellules à différentes concentrations de fumée entière du tabac. Les essais biologiques in vitro ont un degré élevé de variabilité, ainsi, il faut prendre en compte toutes les autres sources de variabilité pour évaluer avec précision la finalité toxicologique de ces essais; toutefois, la fiabilité de la génération de la fumée de la machine n’a jamais été évaluée jusqu’à maintenant. Nous avons donc déterminé la fiabilité de la génération et de la dilution (RSD entre 0,7 et 12 %) de la fumée en quantifiant la présence de deux gaz de référence (le CH4 par détection à ionisation de flamme et le CO par absorption infrarouge) et d’un composé de la phase particulaire, le solanesol (par chromatographie en phase liquide à haute performance). Ensuite, la relation entre la dose et la dilution des composés de la phase vapeur retrouvée dans la chambre d’exposition cellulaire a été caractérisée en utilisant une nouvelle technique d’extraction dite par HSSE (Headspace Stir Bar Sorptive Extraction) couplée à la chromatographie en phase liquide/ spectrométrie de masse. La répétabilité de la méthode a donné une valeur de RSD se situant entre 10 et 13 % pour cinq des composés de référence identifiés dans la phase vapeur de la fumée de cigarette. La réponse offrant la surface maximale d’aire sous la courbe a été obtenue en utilisant les conditions expérimentales suivantes : intervalle de temps d’exposition/ désorption de 10 0.5 min, température de désorption de 200°C pour 2 min et température de concentration cryogénique (cryofocussing) de -75°C. La précision de la dilution de la fumée est linéaire et est fonction de l’abondance des analytes ainsi que de la concentration (RSD de 6,2 à 17,2 %) avec des quantités de 6 à 450 ng pour les composés de référence. Ces résultats démontrent que la machine à fumer Borgwaldt RM20S® est un outil fiable pour générer et acheminer de façon répétitive et linéaire la fumée de cigarette aux cultures cellulaires in vitro. Notre approche consiste en l’élaboration d’une méthodologie permettant de travailler avec un composé unique du tabac, pouvant être appliqué à des échantillons plus complexes par la suite ; ex : la phase vapeur de la fumée de cigarette. La méthodologie ainsi développée peut potentiellement servir de méthode de standardisation pour l’évaluation d’instruments ou de l’identification de produits dans l’industrie de tabac.