13 resultados para Spectral theory, differential operators, quantum graphs, indefinite operators
em Université de Montréal, Canada
Resumo:
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0. On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider. On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété.
Resumo:
Ce mémoire a pour but d'étudier les propriétés des solutions à l'équation aux valeurs propres de l'opérateur de Laplace sur le disque lorsque les valeurs propres tendent vers l'in ni. En particulier, on s'intéresse au taux de croissance des normes ponctuelle et L1. Soit D le disque unitaire et @D sa frontière (le cercle unitaire). On s'inté- resse aux solutions de l'équation aux valeurs propres f = f avec soit des conditions frontières de Dirichlet (fj@D = 0), soit des conditions frontières de Neumann ( @f @nj@D = 0 ; notons que sur le disque, la dérivée normale est simplement la dérivée par rapport à la variable radiale : @ @n = @ @r ). Les fonctions propres correspondantes sont données par : f (r; ) = fn;m(r; ) = Jn(kn;mr)(Acos(n ) + B sin(n )) (Dirichlet) fN (r; ) = fN n;m(r; ) = Jn(k0 n;mr)(Acos(n ) + B sin(n )) (Neumann) où Jn est la fonction de Bessel de premier type d'ordre n, kn;m est son m- ième zéro et k0 n;m est le m-ième zéro de sa dérivée (ici on dénote les fonctions propres pour le problème de Dirichlet par f et celles pour le problème de Neumann par fN). Dans ce cas, on obtient que le spectre SpD( ) du laplacien sur D, c'est-à-dire l'ensemble de ses valeurs propres, est donné par : SpD( ) = f : f = fg = fk2 n;m : n = 0; 1; 2; : : :m = 1; 2; : : :g (Dirichlet) SpN D( ) = f : fN = fNg = fk0 n;m 2 : n = 0; 1; 2; : : :m = 1; 2; : : :g (Neumann) En n, on impose que nos fonctions propres soient normalisées par rapport à la norme L2 sur D, c'est-à-dire : R D F2 da = 1 (à partir de maintenant on utilise F pour noter les fonctions propres normalisées et f pour les fonctions propres quelconques). Sous ces conditions, on s'intéresse à déterminer le taux de croissance de la norme L1 des fonctions propres normalisées, notée jjF jj1, selon . Il est vi important de mentionner que la norme L1 d'une fonction sur un domaine correspond au maximum de sa valeur absolue sur le domaine. Notons que dépend de deux paramètres, m et n et que la dépendance entre et la norme L1 dépendra du rapport entre leurs taux de croissance. L'étude du comportement de la norme L1 est étroitement liée à l'étude de l'ensemble E(D) qui est l'ensemble des points d'accumulation de log(jjF jj1)= log : Notre principal résultat sera de montrer que [7=36; 1=4] E(B2) [1=18; 1=4]: Le mémoire est organisé comme suit. L'introdution et les résultats principaux sont présentés au chapitre 1. Au chapitre 2, on rappelle quelques faits biens connus concernant les fonctions propres du laplacien sur le disque et sur les fonctions de Bessel. Au chapitre 3, on prouve des résultats concernant la croissance de la norme ponctuelle des fonctions propres. On montre notamment que, si m=n ! 0, alors pour tout point donné (r; ) du disque, la valeur de F (r; ) décroit exponentiellement lorsque ! 1. Au chapitre 4, on montre plusieurs résultats sur la croissance de la norme L1. Le probl ème avec conditions frontières de Neumann est discuté au chapitre 5 et on présente quelques résultats numériques au chapitre 6. Une brève discussion et un sommaire de notre travail se trouve au chapitre 7.
Resumo:
Ce mémoire est une partie d’un programme de recherche qui étudie la superintégrabilité des systèmes avec spin. Plus particulièrement, nous nous intéressons à un hamiltonien avec interaction spin-orbite en trois dimensions admettant une intégrale du mouvement qui est un polynôme matriciel d’ordre deux dans l’impulsion. Puisque nous considérons un hamiltonien invariant sous rotation et sous parité, nous classifions les intégrales du mouvement selon des multiplets irréductibles de O(3). Nous calculons le commutateur entre l’hamiltonien et un opérateur général d’ordre deux dans l’impulsion scalaire, pseudoscalaire, vecteur et pseudovecteur. Nous donnons la classification complète des systèmes admettant des intégrales du mouvement scalaire et vectorielle. Nous trouvons une condition nécessaire à remplir pour le potentiel sous forme d’une équation différentielle pour les cas pseudo-scalaire et pseudo-vectoriel. Nous utilisons la réduction par symétrie pour obtenir des solutions particulières de ces équations.
Resumo:
La théorie de l'information quantique étudie les limites fondamentales qu'imposent les lois de la physique sur les tâches de traitement de données comme la compression et la transmission de données sur un canal bruité. Cette thèse présente des techniques générales permettant de résoudre plusieurs problèmes fondamentaux de la théorie de l'information quantique dans un seul et même cadre. Le théorème central de cette thèse énonce l'existence d'un protocole permettant de transmettre des données quantiques que le receveur connaît déjà partiellement à l'aide d'une seule utilisation d'un canal quantique bruité. Ce théorème a de plus comme corollaires immédiats plusieurs théorèmes centraux de la théorie de l'information quantique. Les chapitres suivants utilisent ce théorème pour prouver l'existence de nouveaux protocoles pour deux autres types de canaux quantiques, soit les canaux de diffusion quantiques et les canaux quantiques avec information supplémentaire fournie au transmetteur. Ces protocoles traitent aussi de la transmission de données quantiques partiellement connues du receveur à l'aide d'une seule utilisation du canal, et ont comme corollaires des versions asymptotiques avec et sans intrication auxiliaire. Les versions asymptotiques avec intrication auxiliaire peuvent, dans les deux cas, être considérées comme des versions quantiques des meilleurs théorèmes de codage connus pour les versions classiques de ces problèmes. Le dernier chapitre traite d'un phénomène purement quantique appelé verrouillage: il est possible d'encoder un message classique dans un état quantique de sorte qu'en lui enlevant un sous-système de taille logarithmique par rapport à sa taille totale, on puisse s'assurer qu'aucune mesure ne puisse avoir de corrélation significative avec le message. Le message se trouve donc «verrouillé» par une clé de taille logarithmique. Cette thèse présente le premier protocole de verrouillage dont le critère de succès est que la distance trace entre la distribution jointe du message et du résultat de la mesure et le produit de leur marginales soit suffisamment petite.
Resumo:
Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.
Resumo:
Dans cette thèse l’ancienne question philosophique “tout événement a-t-il une cause ?” sera examinée à la lumière de la mécanique quantique et de la théorie des probabilités. Aussi bien en physique qu’en philosophie des sciences la position orthodoxe maintient que le monde physique est indéterministe. Au niveau fondamental de la réalité physique – au niveau quantique – les événements se passeraient sans causes, mais par chance, par hasard ‘irréductible’. Le théorème physique le plus précis qui mène à cette conclusion est le théorème de Bell. Ici les prémisses de ce théorème seront réexaminées. Il sera rappelé que d’autres solutions au théorème que l’indéterminisme sont envisageables, dont certaines sont connues mais négligées, comme le ‘superdéterminisme’. Mais il sera argué que d’autres solutions compatibles avec le déterminisme existent, notamment en étudiant des systèmes physiques modèles. Une des conclusions générales de cette thèse est que l’interprétation du théorème de Bell et de la mécanique quantique dépend crucialement des prémisses philosophiques desquelles on part. Par exemple, au sein de la vision d’un Spinoza, le monde quantique peut bien être compris comme étant déterministe. Mais il est argué qu’aussi un déterminisme nettement moins radical que celui de Spinoza n’est pas éliminé par les expériences physiques. Si cela est vrai, le débat ‘déterminisme – indéterminisme’ n’est pas décidé au laboratoire : il reste philosophique et ouvert – contrairement à ce que l’on pense souvent. Dans la deuxième partie de cette thèse un modèle pour l’interprétation de la probabilité sera proposé. Une étude conceptuelle de la notion de probabilité indique que l’hypothèse du déterminisme aide à mieux comprendre ce que c’est qu’un ‘système probabiliste’. Il semble que le déterminisme peut répondre à certaines questions pour lesquelles l’indéterminisme n’a pas de réponses. Pour cette raison nous conclurons que la conjecture de Laplace – à savoir que la théorie des probabilités présuppose une réalité déterministe sous-jacente – garde toute sa légitimité. Dans cette thèse aussi bien les méthodes de la philosophie que de la physique seront utilisées. Il apparaît que les deux domaines sont ici solidement reliés, et qu’ils offrent un vaste potentiel de fertilisation croisée – donc bidirectionnelle.
Resumo:
On révise les prérequis de géométrie différentielle nécessaires à une première approche de la théorie de la quantification géométrique, c'est-à-dire des notions de base en géométrie symplectique, des notions de groupes et d'algèbres de Lie, d'action d'un groupe de Lie, de G-fibré principal, de connexion, de fibré associé et de structure presque-complexe. Ceci mène à une étude plus approfondie des fibrés en droites hermitiens, dont une condition d'existence de fibré préquantique sur une variété symplectique. Avec ces outils en main, nous commençons ensuite l'étude de la quantification géométrique, étape par étape. Nous introduisons la théorie de la préquantification, i.e. la construction des opérateurs associés à des observables classiques et la construction d'un espace de Hilbert. Des problèmes majeurs font surface lors de l'application concrète de la préquantification : les opérateurs ne sont pas ceux attendus par la première quantification et l'espace de Hilbert formé est trop gros. Une première correction, la polarisation, élimine quelques problèmes, mais limite grandement l'ensemble des observables classiques que l'on peut quantifier. Ce mémoire n'est pas un survol complet de la quantification géométrique, et cela n'est pas son but. Il ne couvre ni la correction métaplectique, ni le noyau BKS. Il est un à-côté de lecture pour ceux qui s'introduisent à la quantification géométrique. D'une part, il introduit des concepts de géométrie différentielle pris pour acquis dans (Woodhouse [21]) et (Sniatycki [18]), i.e. G-fibrés principaux et fibrés associés. Enfin, il rajoute des détails à quelques preuves rapides données dans ces deux dernières références.
Resumo:
Ce mémoire, composé d'un article en collaboration avec Monsieur Luc Vinet et Vincent X. Genest, est la suite du travail effectué sur les systèmes quantiques super-intégrables définis par des Hamiltoniens de type Dunkl. Plus particulièrement, ce mémoire vise l'analyse du problème de Coulomb-Dunkl dans le plan qui est une généralisation du système quantique de l'atome d'hydrogène impliquant des opérateurs de réflexion sur les variables x et y. Le modèle est défini par un potentiel en 1/r. Nous avons tout d'abord remarqué que l'Hamiltonien est séparable en coordonnées polaires et que les fonctions d'onde s'écrivent en termes de produits de polynômes de Laguerre généralisés et des harmoniques de Dunkl sur le cercle. L'algèbre générée par les opérateurs de symétrie nous a également permis de confirmer le caractère maximalement super-intégrable du problème de Coulomb-Dunkl. Nous avons aussi pu écrire explicitement les représentations de cette même algèbre. Nous avons finalement trouvé le spectre de l'énergie de manière algébrique.
Resumo:
Cette thèse est divisée en cinq parties portant sur les thèmes suivants: l’interprétation physique et algébrique de familles de fonctions orthogonales multivariées et leurs applications, les systèmes quantiques superintégrables en deux et trois dimensions faisant intervenir des opérateurs de réflexion, la caractérisation de familles de polynômes orthogonaux appartenant au tableau de Bannai-Ito et l’examen des structures algébriques qui leurs sont associées, l’étude de la relation entre le recouplage de représentations irréductibles d’algèbres et de superalgèbres et les systèmes superintégrables, ainsi que l’interprétation algébrique de familles de polynômes multi-orthogonaux matriciels. Dans la première partie, on développe l’interprétation physico-algébrique des familles de polynômes orthogonaux multivariés de Krawtchouk, de Meixner et de Charlier en tant qu’éléments de matrice des représentations unitaires des groupes SO(d+1), SO(d,1) et E(d) sur les états d’oscillateurs. On détermine les amplitudes de transition entre les états de l’oscillateur singulier associés aux bases cartésienne et polysphérique en termes des polynômes multivariés de Hahn. On examine les coefficients 9j de su(1,1) par le biais du système superintégrable générique sur la 3-sphère. On caractérise les polynômes de q-Krawtchouk comme éléments de matrices des «q-rotations» de U_q(sl_2). On conçoit un réseau de spin bidimensionnel qui permet le transfert parfait d’états quantiques à l’aide des polynômes de Krawtchouk à deux variables et on construit un modèle discret de l’oscillateur quantique dans le plan à l’aide des polynômes de Meixner bivariés. Dans la seconde partie, on étudie les systèmes superintégrables de type Dunkl, qui font intervenir des opérateurs de réflexion. On examine l’oscillateur de Dunkl en deux et trois dimensions, l’oscillateur singulier de Dunkl dans le plan et le système générique sur la 2-sphère avec réflexions. On démontre la superintégrabilité de chacun de ces systèmes. On obtient leurs constantes du mouvement, on détermine leurs algèbres de symétrie et leurs représentations, on donne leurs solutions exactes et on détaille leurs liens avec les polynômes orthogonaux du tableau de Bannai-Ito. Dans la troisième partie, on caractérise deux familles de polynômes du tableau de Bannai-Ito: les polynômes de Bannai-Ito complémentaires et les polynômes de Chihara. On montre également que les polynômes de Bannai-Ito sont les coefficients de Racah de la superalgèbre osp(1,2). On détermine l’algèbre de symétrie des polynômes duaux -1 de Hahn dans le cadre du problème de Clebsch-Gordan de osp(1,2). On propose une q - généralisation des polynômes de Bannai-Ito en examinant le problème de Racah pour la superalgèbre quantique osp_q(1,2). Finalement, on montre que la q -algèbre de Bannai-Ito sert d’algèbre de covariance à osp_q(1,2). Dans la quatrième partie, on détermine le lien entre le recouplage de représentations des algèbres su(1,1) et osp(1,2) et les systèmes superintégrables du deuxième ordre avec ou sans réflexions. On étudie également les représentations des algèbres de Racah-Wilson et de Bannai-Ito. On montre aussi que l’algèbre de Racah-Wilson sert d’algèbre de covariance quadratique à l’algèbre de Lie sl(2). Dans la cinquième partie, on construit deux familles explicites de polynômes d-orthogonaux basées sur su(2). On étudie les états cohérents et comprimés de l’oscillateur fini et on caractérise une famille de polynômes multi-orthogonaux matriciels.
Resumo:
Nous présentons dans cette thèse des théorèmes de point fixe pour des contractions multivoques définies sur des espaces métriques, et, sur des espaces de jauges munis d’un graphe. Nous illustrons également les applications de ces résultats à des inclusions intégrales et à la théorie des fractales. Cette thèse est composée de quatre articles qui sont présentés dans quatre chapitres. Dans le chapitre 1, nous établissons des résultats de point fixe pour des fonctions multivoques, appelées G-contractions faibles. Celles-ci envoient des points connexes dans des points connexes et contractent la longueur des chemins. Les ensembles de points fixes sont étudiés. La propriété d’invariance homotopique d’existence d’un point fixe est également établie pour une famille de Gcontractions multivoques faibles. Dans le chapitre 2, nous établissons l’existence de solutions pour des systèmes d’inclusions intégrales de Hammerstein sous des conditions de type de monotonie mixte. L’existence de solutions pour des systèmes d’inclusions différentielles avec conditions initiales ou conditions aux limites périodiques est également obtenue. Nos résultats s’appuient sur nos théorèmes de point fixe pour des G-contractions multivoques faibles établis au chapitre 1. Dans le chapitre 3, nous appliquons ces mêmes résultats de point fixe aux systèmes de fonctions itérées assujettis à un graphe orienté. Plus précisément, nous construisons un espace métrique muni d’un graphe G et une G-contraction appropriés. En utilisant les points fixes de cette G-contraction, nous obtenons plus d’information sur les attracteurs de ces systèmes de fonctions itérées. Dans le chapitre 4, nous considérons des contractions multivoques définies sur un espace de jauges muni d’un graphe. Nous prouvons un résultat de point fixe pour des fonctions multivoques qui envoient des points connexes dans des points connexes et qui satisfont une condition de contraction généralisée. Ensuite, nous étudions des systèmes infinis de fonctions itérées assujettis à un graphe orienté (H-IIFS). Nous donnons des conditions assurant l’existence d’un attracteur unique à un H-IIFS. Enfin, nous appliquons notre résultat de point fixe pour des contractions multivoques définies sur un espace de jauges muni d’un graphe pour obtenir plus d’information sur l’attracteur d’un H-IIFS. Plus précisément, nous construisons un espace de jauges muni d’un graphe G et une G-contraction appropriés tels que ses points fixes sont des sous-attracteurs du H-IIFS.
Resumo:
Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.
Resumo:
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel. Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment. Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique. Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive.
Resumo:
La synthèse d'images dites photoréalistes nécessite d'évaluer numériquement la manière dont la lumière et la matière interagissent physiquement, ce qui, malgré la puissance de calcul impressionnante dont nous bénéficions aujourd'hui et qui ne cesse d'augmenter, est encore bien loin de devenir une tâche triviale pour nos ordinateurs. Ceci est dû en majeure partie à la manière dont nous représentons les objets: afin de reproduire les interactions subtiles qui mènent à la perception du détail, il est nécessaire de modéliser des quantités phénoménales de géométries. Au moment du rendu, cette complexité conduit inexorablement à de lourdes requêtes d'entrées-sorties, qui, couplées à des évaluations d'opérateurs de filtrage complexes, rendent les temps de calcul nécessaires à produire des images sans défaut totalement déraisonnables. Afin de pallier ces limitations sous les contraintes actuelles, il est nécessaire de dériver une représentation multiéchelle de la matière. Dans cette thèse, nous construisons une telle représentation pour la matière dont l'interface correspond à une surface perturbée, une configuration qui se construit généralement via des cartes d'élévations en infographie. Nous dérivons notre représentation dans le contexte de la théorie des microfacettes (conçue à l'origine pour modéliser la réflectance de surfaces rugueuses), que nous présentons d'abord, puis augmentons en deux temps. Dans un premier temps, nous rendons la théorie applicable à travers plusieurs échelles d'observation en la généralisant aux statistiques de microfacettes décentrées. Dans l'autre, nous dérivons une procédure d'inversion capable de reconstruire les statistiques de microfacettes à partir de réponses de réflexion d'un matériau arbitraire dans les configurations de rétroréflexion. Nous montrons comment cette théorie augmentée peut être exploitée afin de dériver un opérateur général et efficace de rééchantillonnage approximatif de cartes d'élévations qui (a) préserve l'anisotropie du transport de la lumière pour n'importe quelle résolution, (b) peut être appliqué en amont du rendu et stocké dans des MIP maps afin de diminuer drastiquement le nombre de requêtes d'entrées-sorties, et (c) simplifie de manière considérable les opérations de filtrage par pixel, le tout conduisant à des temps de rendu plus courts. Afin de valider et démontrer l'efficacité de notre opérateur, nous synthétisons des images photoréalistes anticrenelées et les comparons à des images de référence. De plus, nous fournissons une implantation C++ complète tout au long de la dissertation afin de faciliter la reproduction des résultats obtenus. Nous concluons avec une discussion portant sur les limitations de notre approche, ainsi que sur les verrous restant à lever afin de dériver une représentation multiéchelle de la matière encore plus générale.