11 resultados para Simulation studies
em Université de Montréal, Canada
Resumo:
L’agrégation érythrocytaire est le principal facteur responsable des propriétés non newtoniennes sanguines pour des conditions d’écoulement à faible cisaillement. Lorsque les globules rouges s’agrègent, ils forment des rouleaux et des structures tridimensionnelles enchevêtrées qui font passer la viscosité sanguine de quelques mPa.s à une centaine de mPa.s. Cette organisation microstructurale érythrocytaire est maintenue par des liens inter-globulaires de faible énergie, lesquels sont brisés par une augmentation du cisaillement. Ces propriétés macroscopiques sont bien connues. Toutefois, les liens étiologiques entre ces propriétés rhéologiques générales et leurs effets pathophysiologiques demeurent difficiles à évaluer in vivo puisque les propriétés sanguines sont dynamiques et fortement tributaires des conditions d’écoulement. Ainsi, à partir de propriétés rhéologiques mesurées in vitro dans des conditions contrôlées, il devient difficile d’extrapoler leurs valeurs dans un environnement physiologique. Or, les thrombophlébites se développent systématiquement en des loci particuliers du système cardiovasculaire. D’autre part, plusieurs études cliniques ont établi que des conditions hémorhéologiques perturbées constituent des facteurs de risque de thrombose veineuse mais leurs contributions étiologiques demeurent hypothétiques ou corrélatives. En conséquence, un outil de caractérisation hémorhéologique applicable in vivo et in situ devrait permettre de mieux cerner et comprendre ces implications. Les ultrasons, qui se propagent dans les tissus biologiques, sont sensibles à l’agrégation érythrocytaire. De nature non invasive, l’imagerie ultrasonore permet de caractériser in vivo et in situ la microstructure sanguine dans des conditions d’écoulements physiologiques. Les signaux ultrasonores rétrodiffusés portent une information sur la microstructure sanguine reflétant directement les perturbations hémorhéologiques locales. Une cartographie in vivo de l’agrégation érythrocytaire, unique aux ultrasons, devrait permettre d’investiguer les implications étiologiques de l’hémorhéologie dans la maladie thrombotique vasculaire. Cette thèse complète une série de travaux effectués au Laboratoire de Biorhéologie et d’Ultrasonographie Médicale (LBUM) du centre de recherche du Centre hospitalier de l’Université de Montréal portant sur la rétrodiffusion ultrasonore érythrocytaire et menant à une application in vivo de la méthode. Elle se situe à la suite de travaux de modélisation qui ont mis en évidence la pertinence d’un modèle particulaire tenant compte de la densité des globules rouges, de la section de rétrodiffusion unitaire d’un globule et du facteur de structure. Ce modèle permet d’établir le lien entre la microstructure sanguine et le spectre fréquentiel du coefficient de rétrodiffusion ultrasonore. Une approximation au second ordre en fréquence du facteur de structure est proposée dans ces travaux pour décrire la microstructure sanguine. Cette approche est tout d’abord présentée et validée dans un champ d’écoulement cisaillé homogène. Une extension de la méthode en 2D permet ensuite la cartographie des propriétés structurelles sanguines en écoulement tubulaire par des images paramétriques qui mettent en évidence le caractère temporel de l’agrégation et la sensibilité ultrasonore à ces phénomènes. Une extrapolation menant à une relation entre la taille des agrégats érythrocytaires et la viscosité sanguine permet l’établissement de cartes de viscosité locales. Enfin, il est démontré, à l’aide d’un modèle animal, qu’une augmentation subite de l’agrégation érythrocytaire provoque la formation d’un thrombus veineux. Le niveau d’agrégation, la présence du thrombus et les variations du débit ont été caractérisés, dans cette étude, par imagerie ultrasonore. Nos résultats suggèrent que des paramètres hémorhéologiques, préférablement mesurés in vivo et in situ, devraient faire partie du profil de risque thrombotique.
Resumo:
Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique.
Resumo:
Dans ce mémoire, nous étudions le problème de l'estimation de la variance pour les estimateurs par double dilatation et de calage pour l'échantillonnage à deux phases. Nous proposons d'utiliser une décomposition de la variance différente de celle habituellement utilisée dans l'échantillonnage à deux phases, ce qui mène à un estimateur de la variance simplifié. Nous étudions les conditions sous lesquelles les estimateurs simplifiés de la variance sont valides. Pour ce faire, nous considérons les cas particuliers suivants : (1) plan de Poisson à la deuxième phase, (2) plan à deux degrés, (3) plan aléatoire simple sans remise aux deux phases, (4) plan aléatoire simple sans remise à la deuxième phase. Nous montrons qu'une condition cruciale pour la validité des estimateurs simplifiés sous les plans (1) et (2) consiste à ce que la fraction de sondage utilisée pour la première phase soit négligeable (ou petite). Nous montrons sous les plans (3) et (4) que, pour certains estimateurs de calage, l'estimateur simplifié de la variance est valide lorsque la fraction de sondage à la première phase est petite en autant que la taille échantillonnale soit suffisamment grande. De plus, nous montrons que les estimateurs simplifiés de la variance peuvent être obtenus de manière alternative en utilisant l'approche renversée (Fay, 1991 et Shao et Steel, 1999). Finalement, nous effectuons des études par simulation dans le but d'appuyer les résultats théoriques.
Resumo:
Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.
Resumo:
Notre progiciel PoweR vise à faciliter l'obtention ou la vérification des études empiriques de puissance pour les tests d'ajustement. En tant que tel, il peut être considéré comme un outil de calcul de recherche reproductible, car il devient très facile à reproduire (ou détecter les erreurs) des résultats de simulation déjà publiés dans la littérature. En utilisant notre progiciel, il devient facile de concevoir de nouvelles études de simulation. Les valeurs critiques et puissances de nombreuses statistiques de tests sous une grande variété de distributions alternatives sont obtenues très rapidement et avec précision en utilisant un C/C++ et R environnement. On peut même compter sur le progiciel snow de R pour le calcul parallèle, en utilisant un processeur multicœur. Les résultats peuvent être affichés en utilisant des tables latex ou des graphiques spécialisés, qui peuvent être incorporés directement dans vos publications. Ce document donne un aperçu des principaux objectifs et les principes de conception ainsi que les stratégies d'adaptation et d'extension.
Resumo:
Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l’estimation des petits domaines et l’imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l’erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l’erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n’a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l’influence d’une unité de la population. Ces deux classes d’estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l’information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l’information disponible dans le domaine d’intérêt. Dans certaines situations, un biais non négligeable est possible pour l’estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d’influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d’erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l’estimation de l’erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c’est-à-dire, elle n’est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S’agissant de l’imputation en présence de non-réponse partielle, certaines formes d’imputation simple ont été étudiées. L’imputation par la régression déterministe entre les classes, qui inclut l’imputation par le ratio et l’imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d’imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d’imputation ou le modèle de non-réponse n’est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l’un au moins des modèles d’imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l’estimateur doublement robuste. Les résultats des études par simulations montrent que l’estimateur proposé performe bien pour un choix approprié de la constante de robustesse.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Contexte. Les études cas-témoins sont très fréquemment utilisées par les épidémiologistes pour évaluer l’impact de certaines expositions sur une maladie particulière. Ces expositions peuvent être représentées par plusieurs variables dépendant du temps, et de nouvelles méthodes sont nécessaires pour estimer de manière précise leurs effets. En effet, la régression logistique qui est la méthode conventionnelle pour analyser les données cas-témoins ne tient pas directement compte des changements de valeurs des covariables au cours du temps. Par opposition, les méthodes d’analyse des données de survie telles que le modèle de Cox à risques instantanés proportionnels peuvent directement incorporer des covariables dépendant du temps représentant les histoires individuelles d’exposition. Cependant, cela nécessite de manipuler les ensembles de sujets à risque avec précaution à cause du sur-échantillonnage des cas, en comparaison avec les témoins, dans les études cas-témoins. Comme montré dans une étude de simulation précédente, la définition optimale des ensembles de sujets à risque pour l’analyse des données cas-témoins reste encore à être élucidée, et à être étudiée dans le cas des variables dépendant du temps. Objectif: L’objectif général est de proposer et d’étudier de nouvelles versions du modèle de Cox pour estimer l’impact d’expositions variant dans le temps dans les études cas-témoins, et de les appliquer à des données réelles cas-témoins sur le cancer du poumon et le tabac. Méthodes. J’ai identifié de nouvelles définitions d’ensemble de sujets à risque, potentiellement optimales (le Weighted Cox model and le Simple weighted Cox model), dans lesquelles différentes pondérations ont été affectées aux cas et aux témoins, afin de refléter les proportions de cas et de non cas dans la population source. Les propriétés des estimateurs des effets d’exposition ont été étudiées par simulation. Différents aspects d’exposition ont été générés (intensité, durée, valeur cumulée d’exposition). Les données cas-témoins générées ont été ensuite analysées avec différentes versions du modèle de Cox, incluant les définitions anciennes et nouvelles des ensembles de sujets à risque, ainsi qu’avec la régression logistique conventionnelle, à des fins de comparaison. Les différents modèles de régression ont ensuite été appliqués sur des données réelles cas-témoins sur le cancer du poumon. Les estimations des effets de différentes variables de tabac, obtenues avec les différentes méthodes, ont été comparées entre elles, et comparées aux résultats des simulations. Résultats. Les résultats des simulations montrent que les estimations des nouveaux modèles de Cox pondérés proposés, surtout celles du Weighted Cox model, sont bien moins biaisées que les estimations des modèles de Cox existants qui incluent ou excluent simplement les futurs cas de chaque ensemble de sujets à risque. De plus, les estimations du Weighted Cox model étaient légèrement, mais systématiquement, moins biaisées que celles de la régression logistique. L’application aux données réelles montre de plus grandes différences entre les estimations de la régression logistique et des modèles de Cox pondérés, pour quelques variables de tabac dépendant du temps. Conclusions. Les résultats suggèrent que le nouveau modèle de Cox pondéré propose pourrait être une alternative intéressante au modèle de régression logistique, pour estimer les effets d’expositions dépendant du temps dans les études cas-témoins
Resumo:
Le travail de nuit est associé avec plusieurs problèmes de santé. Le désalignement entre la phase circadienne et le cycle éveil-sommeil cause une désynchronie interne considérée comme la principale source de ces problèmes. L’ajustement circadien au travail de nuit est proposé comme contremesure. Normalement, l’ajustement circadien complet n’est pas recommandé puisqu’il engendre un désalignement circadien lors du retour à l’horaire de jour, causant des changements de phase répétés et la désynchronie interne. L’ajustement circadien partiel est alors proposé comme compromis afin de stabiliser les rythmes circadiens des travailleurs de nuit. Cependant, l’ampleur de l’ajustement circadien partiel nécessaire à l’amélioration du sommeil et de la vigilance demeure vague. Les ajustements partiels obtenus par délai ou avance de phase sont quantifiés non seulement par la phase du début de la sécrétion de mélatonine en lumière tamisée, mais également par le recoupement de l’épisode de sécrétion de mélatonine avec les périodes d’éveil et de sommeil. Les effets sur le sommeil et la vigilance d’un petit ajustement circadien partiel significatifs sont investigués dans une simulation de travail de nuit en laboratoire pour déterminer leurs implications cliniques. Les effets modestes suggèrent qu’un petit délai de phase peut réduire l’accumulation de la dette de sommeil, alors que l’avance de phase améliore subjectivement la vigilance et l’humeur nocturne. L’ampleur absolue du changement de phase est associée à une amélioration subjective de la vigilance et de l’humeur nocturne. Des études en milieux de travail permettraient de déterminer si ces stratégies sont applicables et bénéfiques aux travailleurs de nuit.
Resumo:
L’innovation pédagogique pour elle-même s’avère parfois discutable, mais elle se justifie quand les enseignants se heurtent aux difficultés d’apprentissage de leurs étudiants. En particulier, certaines notions de physique sont réputées difficiles à appréhender par les étudiants, comme c’est le cas pour l’effet photoélectrique qui n’est pas souvent compris par les étudiants au niveau collégial. Cette recherche tente de déterminer si, dans le cadre d’un cours de physique, la simulation de l’effet photoélectrique et l’utilisation des dispositifs mobiles et en situation de collaboration favorisent une évolution des conceptions des étudiants au sujet de la lumière. Nous avons ainsi procédé à l’élaboration d’un scénario d’apprentissage collaboratif intégrant une simulation de l’effet photoélectrique sur un ordinateur de poche. La conception du scénario a d’abord été influencée par notre vision socioconstructiviste de l’apprentissage. Nous avons effectué deux études préliminaires afin de compléter notre scénario d’apprentissage et valider la plateforme MobileSim et l’interface du simulateur, que nous avons utilisées dans notre expérimentation : la première avec des ordinateurs de bureau et la seconde avec des ordinateurs de poche. Nous avons fait suivre à deux groupes d’étudiants deux cours différents, l’un portant sur une approche traditionnelle d’enseignement, l’autre basé sur le scénario d’apprentissage collaboratif élaboré. Nous leur avons fait passer un test évaluant l’évolution conceptuelle sur la nature de la lumière et sur le phénomène de l’effet photoélectrique et concepts connexes, à deux reprises : la première avant que les étudiants ne s’investissent dans le cours et la seconde après la réalisation des expérimentations. Nos résultats aux prétest et post-test sont complétés par des entrevues individuelles semi-dirigées avec tous les étudiants, par des enregistrements vidéo et par des traces récupérées des fichiers logs ou sur papier. Les étudiants du groupe expérimental ont obtenu de très bons résultats au post-test par rapport à ceux du groupe contrôle. Nous avons enregistré un gain moyen d’apprentissage qualifié de niveau modéré selon Hake (1998). Les résultats des entrevues ont permis de repérer quelques difficultés conceptuelles d’apprentissage chez les étudiants. L’analyse des données recueillies des enregistrements des séquences vidéo, des questionnaires et des traces récupérées nous a permis de mieux comprendre le processus d’apprentissage collaboratif et nous a dévoilé que le nombre et la durée des interactions entre les étudiants sont fortement corrélés avec le gain d’apprentissage. Ce projet de recherche est d’abord une réussite sur le plan de la conception d’un scénario d’apprentissage relatif à un phénomène aussi complexe que l’effet photoélectrique, tout en respectant de nombreux critères (collaboration, simulation, dispositifs mobiles) qui nous paraissaient extrêmement utopiques de réunir dans une situation d’apprentissage en classe. Ce scénario pourra être adapté pour l’apprentissage d’autres notions de la physique et pourra être considéré pour la conception des environnements collaboratifs d’apprentissage mobile innovants, centrés sur les besoins des apprenants et intégrant les technologies au bon moment et pour la bonne activité.