14 resultados para Simulation, Méthodes de
em Université de Montréal, Canada
Resumo:
Cette thèse est divisée en trois chapitres. Le premier explique comment utiliser la méthode «level-set» de manière rigoureuse pour faire la simulation de feux de forêt en utilisant comme modèle physique pour la propagation le modèle de l'ellipse de Richards. Le second présente un nouveau schéma semi-implicite avec une preuve de convergence pour la solution d'une équation de type Hamilton-Jacobi anisotrope. L'avantage principal de cette méthode est qu'elle permet de réutiliser des solutions à des problèmes «proches» pour accélérer le calcul. Une autre application de ce schéma est l'homogénéisation. Le troisième chapitre montre comment utiliser les méthodes numériques des deux premiers chapitres pour étudier l'influence de variations à petites échelles dans la vitesse du vent sur la propagation d'un feu de forêt à l'aide de la théorie de l'homogénéisation.
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.
Resumo:
En lien avec l’avancée rapide de la réduction de la taille des motifs en microfabrication, des processus physiques négligeables à plus grande échelle deviennent dominants lorsque cette taille s’approche de l’échelle nanométrique. L’identification et une meilleure compréhension de ces différents processus sont essentielles pour améliorer le contrôle des procédés et poursuivre la «nanométrisation» des composantes électroniques. Un simulateur cellulaire à l’échelle du motif en deux dimensions s’appuyant sur les méthodes Monte-Carlo a été développé pour étudier l’évolution du profil lors de procédés de microfabrication. Le domaine de gravure est discrétisé en cellules carrées représentant la géométrie initiale du système masque-substrat. On insère les particules neutres et ioniques à l’interface du domaine de simulation en prenant compte des fonctions de distribution en énergie et en angle respectives de chacune des espèces. Le transport des particules est effectué jusqu’à la surface en tenant compte des probabilités de réflexion des ions énergétiques sur les parois ou de la réémission des particules neutres. Le modèle d’interaction particule-surface tient compte des différents mécanismes de gravure sèche telle que la pulvérisation, la gravure chimique réactive et la gravure réactive ionique. Le transport des produits de gravure est pris en compte ainsi que le dépôt menant à la croissance d’une couche mince. La validité du simulateur est vérifiée par comparaison entre les profils simulés et les observations expérimentales issues de la gravure par pulvérisation du platine par une source de plasma d’argon.
Resumo:
Cette thèse, composée de quatre articles scientifiques, porte sur les méthodes numériques atomistiques et leur application à des systèmes semi-conducteurs nanostructurés. Nous introduisons les méthodes accélérées conçues pour traiter les événements activés, faisant un survol des développements du domaine. Suit notre premier article, qui traite en détail de la technique d'activation-relaxation cinétique (ART-cinétique), un algorithme Monte Carlo cinétique hors-réseau autodidacte basé sur la technique de l'activation-relaxation nouveau (ARTn), dont le développement ouvre la voie au traitement exact des interactions élastiques tout en permettant la simulation de matériaux sur des plages de temps pouvant atteindre la seconde. Ce développement algorithmique, combiné à des données expérimentales récentes, ouvre la voie au second article. On y explique le relâchement de chaleur par le silicium cristallin suite à son implantation ionique avec des ions de Si à 3 keV. Grâce à nos simulations par ART-cinétique et l'analyse de données obtenues par nanocalorimétrie, nous montrons que la relaxation est décrite par un nouveau modèle en deux temps: "réinitialiser et relaxer" ("Replenish-and-Relax"). Ce modèle, assez général, peut potentiellement expliquer la relaxation dans d'autres matériaux désordonnés. Par la suite, nous poussons l'analyse plus loin. Le troisième article offre une analyse poussée des mécanismes atomistiques responsables de la relaxation lors du recuit. Nous montrons que les interactions élastiques entre des défauts ponctuels et des petits complexes de défauts contrôlent la relaxation, en net contraste avec la littérature qui postule que des "poches amorphes" jouent ce rôle. Nous étudions aussi certains sous-aspects de la croissance de boîtes quantiques de Ge sur Si (001). En effet, après une courte mise en contexte et une introduction méthodologique supplémentaire, le quatrième article décrit la structure de la couche de mouillage lors du dépôt de Ge sur Si (001) à l'aide d'une implémentation QM/MM du code BigDFT-ART. Nous caractérisons la structure de la reconstruction 2xN de la surface et abaissons le seuil de la température nécessaire pour la diffusion du Ge en sous-couche prédit théoriquement par plus de 100 K.
Resumo:
Des efforts de recherche considérables ont été déployés afin d'améliorer les résultats de traitement de cancers pulmonaires. L'étude de la déformation de l'anatomie du patient causée par la ventilation pulmonaire est au coeur du processus de planification de traitement radio-oncologique. À l'aide d'images de tomodensitométrie quadridimensionnelles (4DCT), une simulation dosimétrique peut être calculée sur les 10 ensembles d'images du 4DCT. Une méthode doit être employée afin de recombiner la dose de radiation calculée sur les 10 anatomies représentant une phase du cycle respiratoire. L'utilisation de recalage déformable d'images (DIR), une méthode de traitement d'images numériques, génère neuf champs vectoriels de déformation permettant de rapporter neuf ensembles d'images sur un ensemble de référence correspondant habituellement à la phase d'expiration profonde du cycle respiratoire. L'objectif de ce projet est d'établir une méthode de génération de champs de déformation à l'aide de la DIR conjointement à une méthode de validation de leur précision. Pour y parvenir, une méthode de segmentation automatique basée sur la déformation surfacique de surface à été créée. Cet algorithme permet d'obtenir un champ de déformation surfacique qui décrit le mouvement de l'enveloppe pulmonaire. Une interpolation volumétrique est ensuite appliquée dans le volume pulmonaire afin d'approximer la déformation interne des poumons. Finalement, une représentation en graphe de la vascularisation interne du poumon a été développée afin de permettre la validation du champ de déformation. Chez 15 patients, une erreur de recouvrement volumique de 7.6 ± 2.5[%] / 6.8 ± 2.1[%] et une différence relative des volumes de 6.8 ± 2.4 [%] / 5.9 ± 1.9 [%] ont été calculées pour le poumon gauche et droit respectivement. Une distance symétrique moyenne 0.8 ± 0.2 [mm] / 0.8 ± 0.2 [mm], une distance symétrique moyenne quadratique de 1.2 ± 0.2 [mm] / 1.3 ± 0.3 [mm] et une distance symétrique maximale 7.7 ± 2.4 [mm] / 10.2 ± 5.2 [mm] ont aussi été calculées pour le poumon gauche et droit respectivement. Finalement, 320 ± 51 bifurcations ont été détectées dans le poumons droit d'un patient, soit 92 ± 10 et 228 ± 45 bifurcations dans la portion supérieure et inférieure respectivement. Nous avons été en mesure d'obtenir des champs de déformation nécessaires pour la recombinaison de dose lors de la planification de traitement radio-oncologique à l'aide de la méthode de déformation hiérarchique des surfaces. Nous avons été en mesure de détecter les bifurcations de la vascularisation pour la validation de ces champs de déformation.
Resumo:
Les protéines sont au coeur de la vie. Ce sont d'incroyables nanomachines moléculaires spécialisées et améliorées par des millions d'années d'évolution pour des fonctions bien définies dans la cellule. La structure des protéines, c'est-à-dire l'arrangement tridimensionnel de leurs atomes, est intimement liée à leurs fonctions. L'absence apparente de structure pour certaines protéines est aussi de plus en plus reconnue comme étant tout aussi cruciale. Les protéines amyloïdes en sont un exemple marquant : elles adoptent un ensemble de structures variées difficilement observables expérimentalement qui sont associées à des maladies neurodégénératives. Cette thèse, dans un premier temps, porte sur l'étude structurelle des protéines amyloïdes bêta-amyloïde (Alzheimer) et huntingtine (Huntington) lors de leur processus de repliement et d'auto-assemblage. Les résultats obtenus permettent de décrire avec une résolution atomique les interactions des ensembles structurels de ces deux protéines. Concernant la protéine bêta-amyloïde (AB), nos résultats identifient des différences structurelles significatives entre trois de ses formes physiologiques durant ses premières étapes d'auto-assemblage en environnement aqueux. Nous avons ensuite comparé ces résultats avec ceux obtenus au cours des dernières années par d'autres groupes de recherche avec des protocoles expérimentaux et de simulations variés. Des tendances claires émergent de notre comparaison quant à l'influence de la forme physiologique de AB sur son ensemble structurel durant ses premières étapes d'auto-assemblage. L'identification des propriétés structurelles différentes rationalise l'origine de leurs propriétés d'agrégation distinctes. Par ailleurs, l'identification des propriétés structurelles communes offrent des cibles potentielles pour des agents thérapeutiques empêchant la formation des oligomères responsables de la neurotoxicité. Concernant la protéine huntingtine, nous avons élucidé l'ensemble structurel de sa région fonctionnelle située à son N-terminal en environnement aqueux et membranaire. En accord avec les données expérimentales disponibles, nos résultats sur son repliement en environnement aqueux révèlent les interactions dominantes ainsi que l'influence sur celles-ci des régions adjacentes à la région fonctionnelle. Nous avons aussi caractérisé la stabilité et la croissance de structures nanotubulaires qui sont des candidats potentiels aux chemins d'auto-assemblage de la région amyloïde de huntingtine. Par ailleurs, nous avons également élaboré, avec un groupe d'expérimentateurs, un modèle détaillé illustrant les principales interactions responsables du rôle d'ancre membranaire de la région N-terminal, qui sert à contrôler la localisation de huntingtine dans la cellule. Dans un deuxième temps, cette thèse porte sur le raffinement d'un modèle gros-grain (sOPEP) et sur le développement d'un nouveau modèle tout-atome (aaOPEP) qui sont tous deux basés sur le champ de force gros-grain OPEP, couramment utilisé pour l'étude du repliement des protéines et de l'agrégation des protéines amyloïdes. L'optimisation de ces modèles a été effectuée dans le but d'améliorer les prédictions de novo de la structure de peptides par la méthode PEP-FOLD. Par ailleurs, les modèles OPEP, sOPEP et aaOPEP ont été inclus dans un nouveau code de dynamique moléculaire très flexible afin de grandement simplifier leurs développements futurs.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Cette thèse développe des méthodes bootstrap pour les modèles à facteurs qui sont couram- ment utilisés pour générer des prévisions depuis l'article pionnier de Stock et Watson (2002) sur les indices de diffusion. Ces modèles tolèrent l'inclusion d'un grand nombre de variables macroéconomiques et financières comme prédicteurs, une caractéristique utile pour inclure di- verses informations disponibles aux agents économiques. Ma thèse propose donc des outils éco- nométriques qui améliorent l'inférence dans les modèles à facteurs utilisant des facteurs latents extraits d'un large panel de prédicteurs observés. Il est subdivisé en trois chapitres complémen- taires dont les deux premiers en collaboration avec Sílvia Gonçalves et Benoit Perron. Dans le premier article, nous étudions comment les méthodes bootstrap peuvent être utilisées pour faire de l'inférence dans les modèles de prévision pour un horizon de h périodes dans le futur. Pour ce faire, il examine l'inférence bootstrap dans un contexte de régression augmentée de facteurs où les erreurs pourraient être autocorrélées. Il généralise les résultats de Gonçalves et Perron (2014) et propose puis justifie deux approches basées sur les résidus : le block wild bootstrap et le dependent wild bootstrap. Nos simulations montrent une amélioration des taux de couverture des intervalles de confiance des coefficients estimés en utilisant ces approches comparativement à la théorie asymptotique et au wild bootstrap en présence de corrélation sérielle dans les erreurs de régression. Le deuxième chapitre propose des méthodes bootstrap pour la construction des intervalles de prévision permettant de relâcher l'hypothèse de normalité des innovations. Nous y propo- sons des intervalles de prédiction bootstrap pour une observation h périodes dans le futur et sa moyenne conditionnelle. Nous supposons que ces prévisions sont faites en utilisant un ensemble de facteurs extraits d'un large panel de variables. Parce que nous traitons ces facteurs comme latents, nos prévisions dépendent à la fois des facteurs estimés et les coefficients de régres- sion estimés. Sous des conditions de régularité, Bai et Ng (2006) ont proposé la construction d'intervalles asymptotiques sous l'hypothèse de Gaussianité des innovations. Le bootstrap nous permet de relâcher cette hypothèse et de construire des intervalles de prédiction valides sous des hypothèses plus générales. En outre, même en supposant la Gaussianité, le bootstrap conduit à des intervalles plus précis dans les cas où la dimension transversale est relativement faible car il prend en considération le biais de l'estimateur des moindres carrés ordinaires comme le montre une étude récente de Gonçalves et Perron (2014). Dans le troisième chapitre, nous suggérons des procédures de sélection convergentes pour les regressions augmentées de facteurs en échantillons finis. Nous démontrons premièrement que la méthode de validation croisée usuelle est non-convergente mais que sa généralisation, la validation croisée «leave-d-out» sélectionne le plus petit ensemble de facteurs estimés pour l'espace généré par les vraies facteurs. Le deuxième critère dont nous montrons également la validité généralise l'approximation bootstrap de Shao (1996) pour les regressions augmentées de facteurs. Les simulations montrent une amélioration de la probabilité de sélectionner par- cimonieusement les facteurs estimés comparativement aux méthodes de sélection disponibles. L'application empirique revisite la relation entre les facteurs macroéconomiques et financiers, et l'excès de rendement sur le marché boursier américain. Parmi les facteurs estimés à partir d'un large panel de données macroéconomiques et financières des États Unis, les facteurs fortement correlés aux écarts de taux d'intérêt et les facteurs de Fama-French ont un bon pouvoir prédictif pour les excès de rendement.