8 resultados para SYMMETRICAL LINEAR COMPLEMENTARITY PROBLEMS
em Université de Montréal, Canada
Resumo:
La survie des réseaux est un domaine d'étude technique très intéressant ainsi qu'une préoccupation critique dans la conception des réseaux. Compte tenu du fait que de plus en plus de données sont transportées à travers des réseaux de communication, une simple panne peut interrompre des millions d'utilisateurs et engendrer des millions de dollars de pertes de revenu. Les techniques de protection des réseaux consistent à fournir une capacité supplémentaire dans un réseau et à réacheminer les flux automatiquement autour de la panne en utilisant cette disponibilité de capacité. Cette thèse porte sur la conception de réseaux optiques intégrant des techniques de survie qui utilisent des schémas de protection basés sur les p-cycles. Plus précisément, les p-cycles de protection par chemin sont exploités dans le contexte de pannes sur les liens. Notre étude se concentre sur la mise en place de structures de protection par p-cycles, et ce, en supposant que les chemins d'opération pour l'ensemble des requêtes sont définis a priori. La majorité des travaux existants utilisent des heuristiques ou des méthodes de résolution ayant de la difficulté à résoudre des instances de grande taille. L'objectif de cette thèse est double. D'une part, nous proposons des modèles et des méthodes de résolution capables d'aborder des problèmes de plus grande taille que ceux déjà présentés dans la littérature. D'autre part, grâce aux nouveaux algorithmes, nous sommes en mesure de produire des solutions optimales ou quasi-optimales. Pour ce faire, nous nous appuyons sur la technique de génération de colonnes, celle-ci étant adéquate pour résoudre des problèmes de programmation linéaire de grande taille. Dans ce projet, la génération de colonnes est utilisée comme une façon intelligente d'énumérer implicitement des cycles prometteurs. Nous proposons d'abord des formulations pour le problème maître et le problème auxiliaire ainsi qu'un premier algorithme de génération de colonnes pour la conception de réseaux protegées par des p-cycles de la protection par chemin. L'algorithme obtient de meilleures solutions, dans un temps raisonnable, que celles obtenues par les méthodes existantes. Par la suite, une formulation plus compacte est proposée pour le problème auxiliaire. De plus, nous présentons une nouvelle méthode de décomposition hiérarchique qui apporte une grande amélioration de l'efficacité globale de l'algorithme. En ce qui concerne les solutions en nombres entiers, nous proposons deux méthodes heurisiques qui arrivent à trouver des bonnes solutions. Nous nous attardons aussi à une comparaison systématique entre les p-cycles et les schémas classiques de protection partagée. Nous effectuons donc une comparaison précise en utilisant des formulations unifiées et basées sur la génération de colonnes pour obtenir des résultats de bonne qualité. Par la suite, nous évaluons empiriquement les versions orientée et non-orientée des p-cycles pour la protection par lien ainsi que pour la protection par chemin, dans des scénarios de trafic asymétrique. Nous montrons quel est le coût de protection additionnel engendré lorsque des systèmes bidirectionnels sont employés dans de tels scénarios. Finalement, nous étudions une formulation de génération de colonnes pour la conception de réseaux avec des p-cycles en présence d'exigences de disponibilité et nous obtenons des premières bornes inférieures pour ce problème.
Resumo:
Thèse réalisée en cotutelle avec l'Université d'Avignon.
Resumo:
Parmi les méthodes d’estimation de paramètres de loi de probabilité en statistique, le maximum de vraisemblance est une des techniques les plus populaires, comme, sous des conditions l´egères, les estimateurs ainsi produits sont consistants et asymptotiquement efficaces. Les problèmes de maximum de vraisemblance peuvent être traités comme des problèmes de programmation non linéaires, éventuellement non convexe, pour lesquels deux grandes classes de méthodes de résolution sont les techniques de région de confiance et les méthodes de recherche linéaire. En outre, il est possible d’exploiter la structure de ces problèmes pour tenter d’accélerer la convergence de ces méthodes, sous certaines hypothèses. Dans ce travail, nous revisitons certaines approches classiques ou récemment d´eveloppées en optimisation non linéaire, dans le contexte particulier de l’estimation de maximum de vraisemblance. Nous développons également de nouveaux algorithmes pour résoudre ce problème, reconsidérant différentes techniques d’approximation de hessiens, et proposons de nouvelles méthodes de calcul de pas, en particulier dans le cadre des algorithmes de recherche linéaire. Il s’agit notamment d’algorithmes nous permettant de changer d’approximation de hessien et d’adapter la longueur du pas dans une direction de recherche fixée. Finalement, nous évaluons l’efficacité numérique des méthodes proposées dans le cadre de l’estimation de modèles de choix discrets, en particulier les modèles logit mélangés.
Resumo:
L’évolution récente des commutateurs de sélection de longueurs d’onde (WSS -Wavelength Selective Switch) favorise le développement du multiplexeur optique d’insertionextraction reconfigurable (ROADM - Reconfigurable Optical Add/Drop Multiplexers) à plusieurs degrés sans orientation ni coloration, considéré comme un équipement fort prometteur pour les réseaux maillés du futur relativement au multiplexage en longueur d’onde (WDM -Wavelength Division Multiplexing ). Cependant, leur propriété de commutation asymétrique complique la question de l’acheminement et de l’attribution des longueur d’ondes (RWA - Routing andWavelength Assignment). Or la plupart des algorithmes de RWA existants ne tiennent pas compte de cette propriété d’asymétrie. L’interruption des services causée par des défauts d’équipements sur les chemins optiques (résultat provenant de la résolution du problème RWA) a pour conséquence la perte d’une grande quantité de données. Les recherches deviennent ainsi incontournables afin d’assurer la survie fonctionnelle des réseaux optiques, à savoir, le maintien des services, en particulier en cas de pannes d’équipement. La plupart des publications antérieures portaient particulièrement sur l’utilisation d’un système de protection permettant de garantir le reroutage du trafic en cas d’un défaut d’un lien. Cependant, la conception de la protection contre le défaut d’un lien ne s’avère pas toujours suffisante en termes de survie des réseaux WDM à partir de nombreux cas des autres types de pannes devenant courant de nos jours, tels que les bris d’équipements, les pannes de deux ou trois liens, etc. En outre, il y a des défis considérables pour protéger les grands réseaux optiques multidomaines composés de réseaux associés à un domaine simple, interconnectés par des liens interdomaines, où les détails topologiques internes d’un domaine ne sont généralement pas partagés à l’extérieur. La présente thèse a pour objectif de proposer des modèles d’optimisation de grande taille et des solutions aux problèmes mentionnés ci-dessus. Ces modèles-ci permettent de générer des solutions optimales ou quasi-optimales avec des écarts d’optimalité mathématiquement prouvée. Pour ce faire, nous avons recours à la technique de génération de colonnes afin de résoudre les problèmes inhérents à la programmation linéaire de grande envergure. Concernant la question de l’approvisionnement dans les réseaux optiques, nous proposons un nouveau modèle de programmation linéaire en nombres entiers (ILP - Integer Linear Programming) au problème RWA afin de maximiser le nombre de requêtes acceptées (GoS - Grade of Service). Le modèle résultant constitue celui de l’optimisation d’un ILP de grande taille, ce qui permet d’obtenir la solution exacte des instances RWA assez grandes, en supposant que tous les noeuds soient asymétriques et accompagnés d’une matrice de connectivité de commutation donnée. Ensuite, nous modifions le modèle et proposons une solution au problème RWA afin de trouver la meilleure matrice de commutation pour un nombre donné de ports et de connexions de commutation, tout en satisfaisant/maximisant la qualité d’écoulement du trafic GoS. Relativement à la protection des réseaux d’un domaine simple, nous proposons des solutions favorisant la protection contre les pannes multiples. En effet, nous développons la protection d’un réseau d’un domaine simple contre des pannes multiples, en utilisant les p-cycles de protection avec un chemin indépendant des pannes (FIPP - Failure Independent Path Protecting) et de la protection avec un chemin dépendant des pannes (FDPP - Failure Dependent Path-Protecting). Nous proposons ensuite une nouvelle formulation en termes de modèles de flots pour les p-cycles FDPP soumis à des pannes multiples. Le nouveau modèle soulève un problème de taille, qui a un nombre exponentiel de contraintes en raison de certaines contraintes d’élimination de sous-tour. Par conséquent, afin de résoudre efficacement ce problème, on examine : (i) une décomposition hiérarchique du problème auxiliaire dans le modèle de décomposition, (ii) des heuristiques pour gérer efficacement le grand nombre de contraintes. À propos de la protection dans les réseaux multidomaines, nous proposons des systèmes de protection contre les pannes d’un lien. Tout d’abord, un modèle d’optimisation est proposé pour un système de protection centralisée, en supposant que la gestion du réseau soit au courant de tous les détails des topologies physiques des domaines. Nous proposons ensuite un modèle distribué de l’optimisation de la protection dans les réseaux optiques multidomaines, une formulation beaucoup plus réaliste car elle est basée sur l’hypothèse d’une gestion de réseau distribué. Ensuite, nous ajoutons une bande pasiv sante partagée afin de réduire le coût de la protection. Plus précisément, la bande passante de chaque lien intra-domaine est partagée entre les p-cycles FIPP et les p-cycles dans une première étude, puis entre les chemins pour lien/chemin de protection dans une deuxième étude. Enfin, nous recommandons des stratégies parallèles aux solutions de grands réseaux optiques multidomaines. Les résultats de l’étude permettent d’élaborer une conception efficace d’un système de protection pour un très large réseau multidomaine (45 domaines), le plus large examiné dans la littérature, avec un système à la fois centralisé et distribué.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.