13 resultados para REGRESSION TREES
em Université de Montréal, Canada
Resumo:
En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.
Resumo:
Le but de cette thèse est d’expliquer la délinquance prolifique de certains délinquants. Nous avançons la thèse que la délinquance prolifique s’explique par la formation plus fréquente de situations criminogènes. Ces situations réfèrent au moment où un délinquant entre en interaction avec une opportunité criminelle dans un contexte favorable au crime. Plus exactement, il s’agit du moment où le délinquant fait face à cette opportunité, mais où le crime n’a pas encore été commis. La formation de situations criminogènes est facilitée par l’interaction et l’interdépendance de trois éléments : la propension à la délinquance de la personne, son entourage criminalisé et son style de vie. Ainsi, la délinquance prolifique ne pourrait être expliquée adéquatement sans tenir compte de l’interaction entre le risque individuel et le risque contextuel. L’objectif général de la présente thèse est de faire la démonstration de l’importance d’une modélisation interactionnelle entre le risque individuel et le risque contextuel afin d’expliquer la délinquance plus prolifique de certains contrevenants. Pour ce faire, 155 contrevenants placés sous la responsabilité de deux établissements des Services correctionnels du Québec et de quatre centres jeunesse du Québec ont complété un protocole d’évaluation par questionnaires auto-administrés. Dans un premier temps (chapitre trois), nous avons décrit et comparé la nature de la délinquance autorévélée des contrevenants de notre échantillon. Ce premier chapitre de résultats a permis de mettre en valeur le fait que ce bassin de contrevenants est similaire à d’autres échantillons de délinquants en ce qui a trait à la nature de leur délinquance, plus particulièrement, au volume, à la variété et à la gravité de leurs crimes. En effet, la majorité des participants rapportent un volume faible de crimes contre la personne et contre les biens alors qu’un petit groupe se démarque par un lambda très élevé (13,1 % des délinquants de l’échantillon sont responsables de 60,3% de tous les crimes rapportés). Environ quatre délinquants sur cinq rapportent avoir commis au moins un crime contre la personne et un crime contre les biens. De plus, plus de 50% de ces derniers rapportent dans au moins quatre sous-catégories. Finalement, bien que les délinquants de notre échantillon aient un IGC (indice de gravité de la criminalité) moyen relativement faible (médiane = 77), près de 40% des contrevenants rapportent avoir commis au moins un des deux crimes les plus graves recensés dans cette étude (décharger une arme et vol qualifié). Le second objectif spécifique était d’explorer, au chapitre quatre, l’interaction entre les caractéristiques personnelles, l’entourage et le style de vie des délinquants dans la formation de situations criminogènes. Les personnes ayant une propension à la délinquance plus élevée semblent avoir tendance à être davantage entourées de personnes criminalisées et à avoir un style de vie plus oisif. L’entourage criminalisé semble également influencer le style de vie de ces délinquants. Ainsi, l’interdépendance entre ces trois éléments facilite la formation plus fréquente de situations criminogènes et crée une conjoncture propice à l’émergence de la délinquance prolifique. Le dernier objectif spécifique de la thèse, qui a été couvert dans le chapitre cinq, était d’analyser l’impact de la formation de situations criminogènes sur la nature de la délinquance. Les analyses de régression linéaires multiples et les arbres de régression ont permis de souligner la contribution des caractéristiques personnelles, de l’entourage et du style de vie dans l’explication de la nature de la délinquance. D’un côté, les analyses de régression (modèles additifs) suggèrent que l’ensemble des éléments favorisant la formation de situations criminogènes apporte une contribution unique à l’explication de la délinquance. D’un autre côté, les arbres de régression nous ont permis de mieux comprendre l’interaction entre les éléments dans l’explication de la délinquance prolifique. En effet, un positionnement plus faible sur certains éléments peut être compensé par un positionnement plus élevé sur d’autres. De plus, l’accumulation d’éléments favorisant la formation de situations criminogènes ne se fait pas de façon linéaire. Ces conclusions sont appuyées sur des proportions de variance expliquée plus élevées que celles des régressions linéaires multiples. En conclusion, mettre l’accent que sur un seul élément (la personne et sa propension à la délinquance ou le contexte et ses opportunités) ou leur combinaison de façon simplement additive ne permet pas de rendre justice à la complexité de l’émergence de la délinquance prolifique. En mettant à l’épreuve empiriquement cette idée généralement admise, cette thèse permet donc de souligner l’importance de considérer l’interaction entre le risque individuel et le risque contextuel dans l’explication de la délinquance prolifique.
Resumo:
This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.
Resumo:
The focus of the paper is the nonparametric estimation of an instrumental regression function P defined by conditional moment restrictions stemming from a structural econometric model : E[Y-P(Z)|W]=0 and involving endogenous variables Y and Z and instruments W. The function P is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyses identification and overidentification of this model and presents asymptotic properties of the estimated nonparametric instrumental regression function.
Resumo:
This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).
Resumo:
Interest in recycling of forest products has grown in recent years, one of the goals being to conserve the stock of trees or possibly increase it to compensate for positive externalities generated by the forest and neglected by the market. This paper explores the issue as to whether recycling is an appropriate measure to attain such a goal. We do this by considering the problem of the private owner of an area of land, who, acting as a price taker, decides how to allocate his land over time between forestry and some other use, and at what age to harvest the forest area chosen. Once the forest is cut, he makes a new land allocation decision and replants. He does so indefinitely, in a Faustmann-like framework. The wood from the harvest is transformed into a final product which is partly recycled into a substitute for the virgin wood, so that past output affects the current price. We show that in such a context, increasing the rate of recycling will result in less area being devoted to forestry. It will also have the effect of increasing the harvest age of the forest, as long as the planting cost is positive. The net effect on the flow of virgin wood being harvested to supply the market will as a result be ambiguous. The main point however is that recycling will result in a smaller, not a larger, stock of trees in the long run. It would therefore be best to resort to other means if the goal is to increase the stock of trees.
Resumo:
The main objective of this letter is to formulate a new approach of learning a Mahalanobis distance metric for nearest neighbor regression from a training sample set. We propose a modified version of the large margin nearest neighbor metric learning method to deal with regression problems. As an application, the prediction of post-operative trunk 3-D shapes in scoliosis surgery using nearest neighbor regression is described. Accuracy of the proposed method is quantitatively evaluated through experiments on real medical data.