4 resultados para Quantum Computing
em Université de Montréal, Canada
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Cette thèse est consacrée à la complexité basée sur le paradigme des preuves interactives. Les classes ainsi définies ont toutes en commun qu’un ou plusieurs prouveurs, infiniment puissants, tentent de convaincre un vérificateur, de puissance bornée, de l’appartenance d’un mot à un langage. Nous abordons ici le modèle classique, où les participants sont des machines de Turing, et le modèle quantique, où ceux-ci sont des circuits quantiques. La revue de littérature que comprend cette thèse s’adresse à un lecteur déjà familier avec la complexité et l’informatique quantique. Cette thèse présente comme résultat la caractérisation de la classe NP par une classe de preuves interactives quantiques de taille logarithmique. Les différentes classes sont présentées dans un ordre permettant d’aborder aussi facilement que possible les classes interactives. Le premier chapitre est consacré aux classes de base de la complexité ; celles-ci seront utiles pour situer les classes subséquemment présentées. Les chapitres deux et trois présentent respectivement les classes à un et à plusieurs prouveurs. La présentation du résultat ci-haut mentionné est l’objet du chapitre quatre.
Resumo:
L'approximation adiabatique en mécanique quantique stipule que si un système quantique évolue assez lentement, alors il demeurera dans le même état propre. Récemment, une faille dans l'application de l'approximation adiabatique a été découverte. Les limites du théorème seront expliquées lors de sa dérivation. Ce mémoire à pour but d'optimiser la probabilité de se maintenir dans le même état propre connaissant le système initial, final et le temps d'évolution total. Cette contrainte sur le temps empêche le système d'être assez lent pour être adiabatique. Pour solutionner ce problème, une méthode variationnelle est utilisée. Cette méthode suppose connaître l'évolution optimale et y ajoute une petite variation. Par après, nous insérons cette variation dans l'équation de la probabilité d'être adiabatique et développons en série. Puisque la série est développée autour d'un optimum, le terme d'ordre un doit nécessairement être nul. Ceci devrait nous donner un critère sur l'évolution la plus adiabatique possible et permettre de la déterminer. Les systèmes quantiques dépendants du temps sont très complexes. Ainsi, nous commencerons par les systèmes ayant des énergies propres indépendantes du temps. Puis, les systèmes sans contrainte et avec des fonctions d'onde initiale et finale libres seront étudiés.
Resumo:
Le domaine des systèmes de référence quantiques, dont les dernière avancées sont brièvement présentées au chapitre 1, est extrêmement pertinent à la compréhension de la dégradation des états quantiques et de l’évolution d’instruments de mesures quantiques. Toutefois, pour arriver à comprendre formellement ces avancées et à apporter une contribution originale au domaine, il faut s’approprier un certain nombre de concepts physiques et mathématiques, in- troduits au chapitre 2. La dégradation des états quantiques est très présente dans le contrôle d’états utiles à l’informatique quantique. Étant donné que ce dernier tente de contrôler des sys- tèmes à deux états, le plus souvent des moments cinétiques, l’analyse des systèmes de référence quantiques qui les mesurent s’avère opportune. Puisque, parmi les plus petits moments ciné- tiques, le plus connu est de s = 1 et que son état le plus simple est l’état non polarisé, l’étude 2 du comportement d’un système de référence mesurant successivement ce type de moments ci- nétiques constitue le premier pas à franchir. C’est dans le chapitre 3 qu’est fait ce premier pas et il aborde les questions les plus intéressantes, soit celles concernant l’efficacité du système de référence, sa longévité et leur maximum. La prochaine étape est de considérer des états de moments cinétiques polarisés et généraux, étape qui est abordée dans le chapitre 4. Cette fois, l’analyse de la dégradation du système de référence est un peu plus complexe et nous pouvons l’inspecter approximativement par l’évolution de certains paramètres pour une certaine classe d’états de système de référence. De plus, il existe une interaction entre le système de référence et le moment cinétique qui peut avoir un effet sur le système de référence tout à fait comparable à l’effet de la mesure. C’est cette même interaction qui est étudiée dans le chapitre 5, mais, cette fois, pour des moments cinétiques de s = 1. Après une comparaison avec la mesure, il devient manifeste que les ressemblances entre les deux processus sont beaucoup moins apparentes, voire inexistantes. Ainsi, cette ressemblance ne semble pas générale et semble accidentelle lorsqu’elle apparaît.