5 resultados para Prunus persica (L.) Batsch var. persica
em Université de Montréal, Canada
Resumo:
Réalisé en cotutelle avec l'Université Montpellier II
Resumo:
La présente étude offre un panorama sur les interactions et les liens qui existent entre la volatilité des taux de change et les échanges internationaux. L’objectif de ce travail est donc de présenter théoriquement cette relation, puis d’examiner empiriquement l’existence de cette relation de causalité entre le commerce international et la variabilité des taux de change. La littérature portant sur la question se considère dans l'ensemble comme contradictoire et supporte plusieurs controverses qui ne nous permettent pas de conclure clairement quant à la relation en question. Nous essayerons de pousser ces recherches un peu plus loin en réexaminant cette évidence pour le canada et en offrant une investigation empirique sur l’existence éventuelle d'un impact significatif de la volatilité sur les flux désagrégées des exportations sectoriels du canada vers son partenaire, les États-Unis. Nous y examinons la réponse empirique de 5 secteurs d’exportations canadiennes aux variations du taux de change réel effectif entre le canada et les États- Unis. Toutefois, nos résultats obtenus ne nous permettent pas de conclure quant à la significativité relative d’un impact de volatilité de taux de change sur les exportations sectoriels désagrégées destinées aux États-Unis. Dans l’ensemble, même si on admet que les signe des coefficients estimés de la variable de risque dans chaque secteur est négatif, nous arrivons à la conclusion que la volatilité ne semble pas avoir un impact statistiquement significatif sur le volume réelle des exportations du Canada vers les États-Unis.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
La causalité au sens de Granger est habituellement définie par la prévisibilité d'un vecteur de variables par un autre une période à l'avance. Récemment, Lutkepohl (1990) a proposé de définir la non-causalité entre deux variables (ou vecteurs) par la non-prévisibilité à tous les délais dans le futur. Lorsqu'on considère plus de deux vecteurs (ie. lorsque l'ensemble d'information contient les variables auxiliaires), ces deux notions ne sont pas équivalentes. Dans ce texte, nous généralisons d'abord les notions antérieures de causalités en considérant la causalité à un horizon donné h arbitraire, fini ou infini. Ensuite, nous dérivons des conditions nécessaires et suffisantes de non-causalité entre deux vecteurs de variables (à l'intérieur d'un plus grand vecteur) jusqu'à un horizon donné h. Les modèles considérés incluent les autoregressions vectorielles, possiblement d'ordre infini, et les modèles ARIMA multivariés. En particulier, nous donnons des conditions de séparabilité et de rang pour la non-causalité jusqu'à un horizon h, lesquelles sont relativement simples à vérifier.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal