16 resultados para Professional Learning Networks
em Université de Montréal, Canada
Resumo:
Depuis les années 1990, les formations à visée professionnelle, comme l’enseignement, adoptent le paradigme du praticien réflexif. Au Québec, le référentiel de compétences proposé par le ministère de l’Éducation introduit l’idée que tout futur enseignant doit apprendre à « réfléchir sur sa pratique » (MEQ, 2001). Malgré de nombreuses études sur la réflexion, le concept reste flou et polysémique. Comment, dans ces conditions, « faire réfléchir » ? Des chercheurs contemporains, dans la mouvance éducative, humaniste et pragmatique de Dewey (1933), aboutissent à des conceptions convergentes de l’apprentissage par réflexion sur l’expérience (Osterman et Kottkamp, 2004; Brouwer et Korthagen, 2005; Loughran, 2006; Brockbank et McGill, 2007; Donnay et Charlier, 2008, entre autres). De leurs points communs est synthétisée une définition de la réflexion qui peut aider à clarifier son rôle en formation. La recherche se donne comme objectif de « saisir » des événements réflexifs pour élucider comment des formations universitaires contribuent à développer des mécanismes de réflexion favorables à un autorenouvellement professionnel à long terme. La démarche est qualitative, l’approche interprétative-compréhensive. Des entrevues semi-structurées ont permis de recueillir des données auprès de finissants en enseignement du français langue seconde (FLS), en coopération internationale, à l’Université de Montréal, ainsi que d’enseignants de FLS expérimentés d’une université québécoise. Du corpus d’« occurrences de réflexion » ont émergé les significations que les acteurs donnaient à leur expérience d’apprentissage ou de travail. Les résultats sont présentés en trois articles. Le premier décrit la méthodologie construite pour repérer des occurrences de réflexion. Le second révèle deux grandes caractéristiques de dispositifs qui la stimulent particulièrement: 1) l’agir en situation de travail authentique ou vraisemblable; 2) la confrontation interactive à l’altérité (pairs, clientèle). Le troisième article aborde les représentations plus riches, nuancées et critiques de la profession, l’Autre et soi-même sur lesquelles débouche la réflexion. L’étude documente aussi les effets de ces reconceptualisations sur l’acteur et l’action, et produit des typologies des préoccupations des (futurs) professionnels et des objets réfléchis Des pistes de recherche et d’application sont dégagées pour les formations professionnalisantes et le développement professionnel en milieu de travail.
Resumo:
Cette recherche se situe dans le contexte de la société du savoir et de la nécessité de l’apprentissage et du développement professionnel tout au long de la vie. Elle porte sur la dynamique motivationnelle qui anime les enseignants en processus d’apprentissage professionnel, c’est-à-dire lorsqu’ils doivent accomplir des activités dans un programme de formation continue. Les objectifs de cette recherche sont les suivants : développer et valider une échelle qui mesure la satisfaction des besoins psychologiques fondamentaux dans le contexte du développement professionnel lié à l’intégration des TIC chez les enseignants du primaire et du secondaire; déterminer le degré de satisfaction des besoins psychologiques fondamentaux des enseignants dans le contexte de la formation continue concernant l’intégration des TIC; déterminer la perception des enseignants à l’égard de la pertinence des activités de formation continue; identifier les activités et les conditions organisationnelles favorisant la motivation des enseignants du primaire dans leur développement professionnel concernant l’intégration des TIC. Pour atteindre nos objectifs de recherche, nous avons adopté une méthodologie de type mixte, comprenant l’analyse des données quantitatives recueillies à l’aide d’un questionnaire à question fermées (64 participants) et des données qualitatives collectées à l’aide d’entrevues individuelles (5 participants). Malgré certaines limites méthodologiques et conceptuelles, les résultats de la présente recherche indiquent que le soutien à l’autonomie, au sentiment de compétence et à l’appartenance sociale, de même que la pertinence des activités de formation sont proposés comme déterminants principaux de la satisfaction et de la motivation dans le développement professionnel des enseignants. Les résultats de cette recherche ouvrent également la voie à des pistes pour favoriser la motivation dans le développement professionnel et proposent des idées de recherche prospectives.
Resumo:
Ce mémoire tente de répondre à une problématique très importante dans le domaine de recrutement : l’appariement entre offre d’emploi et candidats. Dans notre cas nous disposons de milliers d’offres d’emploi et de millions de profils ramassés sur les sites dédiés et fournis par un industriel spécialisé dans le recrutement. Les offres d’emploi et les profils de candidats sur les réseaux sociaux professionnels sont généralement destinés à des lecteurs humains qui sont les recruteurs et les chercheurs d’emploi. Chercher à effectuer une sélection automatique de profils pour une offre d’emploi se heurte donc à certaines difficultés que nous avons cherché à résoudre dans le présent mémoire. Nous avons utilisé des techniques de traitement automatique de la langue naturelle pour extraire automatiquement les informations pertinentes dans une offre d’emploi afin de construite une requête qui nous permettrait d’interroger notre base de données de profils. Pour valider notre modèle d’extraction de métier, de compétences et de d’expérience, nous avons évalué ces trois différentes tâches séparément en nous basant sur une référence cent offres d’emploi canadiennes que nous avons manuellement annotée. Et pour valider notre outil d’appariement nous avons fait évaluer le résultat de l’appariement de dix offres d’emploi canadiennes par un expert en recrutement.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Les tendances de la participation à la formation des adultes au Canada n’ont pas évolué depuis des décennies, malgré les nouvelles influences économiques qui ont stimulé l’augmentation et la diversification permanente de la formation des employés et malgré les initiatives plus nombreuses en faveur de l’apprentissage des employés en milieu de travail. Il est donc nécessaire de ne plus se contenter d’étudier les prédicteurs de la formation déjà connus dans les profils des employés et des employeurs. Il est, en revanche, indispensable d’étudier les antécédents de la participation des employés à la formation, y compris les aspects et les étapes du processus qui la précède. Cette étude porte sur les antécédents de la participation des employés aux formations dans un important collège communautaire urbain en Ontario. Afin de préparer le recueil des données, un cadre théorique a été élaboré à partir du concept d’expression de la demande. Ce cadre implique l’existence d’un processus qui comporte plusieurs étapes, au cours desquelles plusieurs intervenants interagissent et dont la formation est susceptible d’être le résultat. Les résultats de l’enquête sur le profil d’apprentissage ont permis de conclure que le comportement des employés et de l’employeur est conforme aux modèles de prédicteurs existants et que les taux et les types de participation étaient similaires aux tendances nationales et internationales. L’analyse des entrevues d’un groupe d’employés atypiques, de leurs superviseurs, ainsi que de représentants du collège et du syndicat, a révélé d’importants thèmes clés : l’expression de la demande n’est pas structurée et elle est communiquée par plusieurs canaux, en excluant parfois les superviseurs. De plus, la place de l’auto évaluation est importante, ainsi que la phase de prise de décision. Ces thèmes ont souligné l’interaction de plusieurs intervenants dans le processus d’expression de la demande d’apprentissage et pendant la prise de décision. L’examen des attentes de chacun de ces intervenants au cours de ce processus nous a permis de découvrir un désir tacite chez les superviseurs et les employés, à savoir que la conversation soit à l’initiative de « l’autre ». Ces thèmes clés ont été ensuite abordés dans une discussion qui a révélé une discordance entre le profil de l’employeur et les profils des employés. Celle-ci se prête à la correction par l’employeur de son profil institutionnel pour l’harmoniser avec le profil dispositionnel des employés et optimiser ainsi vraisemblablement son offre de formation. Ils doivent, pour cela, appliquer un processus plus systématique et plus structuré, doté de meilleurs outils. La discussion a porté finalement sur les effets des motivations économiques sur la participation des employés et a permis de conclure que, bien que les employés ne semblent pas se méfier de l’offre de formation de l’employeur et que celle ci ne semble pas non plus les décourager, des questions de pouvoir sont bel et bien en jeu. Elles se sont principalement manifestées pendant le processus de prise de décision et, à cet égard, les superviseurs comme les employés reconnaissent qu’un processus plus structuré serait bénéfique, puisqu’il atténuerait les problèmes d’asymétrie et d’ambiguïté. Les constatations de cette étude sont pertinentes pour le secteur de la formation des adultes et de la formation en milieu de travail et, plus particulièrement, pour la méthodologie de recherche. Nous avons constaté l’avantage d’une méthodologie à deux volets, à l’écoute de l’employeur et des employés, afin de mieux comprendre la relation entre l’offre de formation et la participation à la formation. La définition des antécédents de la participation sous la forme d’un processus dans lequel plusieurs intervenants remplissent plusieurs rôles a permis de créer un modèle plus détaillé qui servira à la recherche future. Ce dernier a démontré qu’il est indispensable de reconnaître que la prise de décision constitue une étape à part entière, située entre l’expression de la demande et la participation à la formation. Ces constatations ont également révélé qu’il est véritablement indispensable que le secteur de la formation des adultes continue à traiter les questions reliées à la reconnaissance de la formation informelle. Ces conclusions et la discussion sur les constatations clés nous ont inspiré des recommandations à appliquer pour modifier les retombées du processus précédant la participation des employés à la formation. La majorité de ces recommandations ont trait à l’infrastructure de ce processus et ciblent donc principalement l’employeur. Certaines recommandations sont cependant destinées aux syndicats, aux superviseurs et aux employés qui peuvent aider l’employeur à remplir son rôle et favoriser la participation efficace de tous à ce processus. Les recommandations qui précédent impliquent que ce sont les antécédents de la formation qui gagneraient à être plus structurés et non la formation elle même. La structuration de l’infrastructure de l’apprentissage présente cependant des risques à elle seule. En liaison avec ce phénomène, une étude spécifique des effets de la nature, de la qualité et de l’asymétrie de la relation superviseur employé sur la participation des employés à la formation serait bénéfique. Mots clés : formation en entreprise, formation professionnelle continue, antécédents à la participation, employés de soutien
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
Le but de cette thèse est d'étudier les corrélats comportementaux et neuronaux du transfert inter-linguistique (TIL) dans l'apprentissage d’une langue seconde (L2). Compte tenu de nos connaissances sur l'influence de la distance linguistique sur le TIL (Paradis, 1987, 2004; Odlin, 1989, 2004, 2005; Gollan, 2005; Ringbom, 2007), nous avons examiné l'effet de facilitation de la similarité phonologique à l’aide de la résonance magnétique fonctionnelle entre des langues linguistiquement proches (espagnol-français) et des langues linguistiquement éloignées (persan-français). L'étude I rapporte les résultats obtenus pour des langues linguistiquement proches (espagnol-français), alors que l'étude II porte sur des langues linguistiquement éloignées (persan-français). Puis, les changements de connectivité fonctionnelle dans le réseau langagier (Price, 2010) et dans le réseau de contrôle supplémentaire impliqué dans le traitement d’une langue seconde (Abutalebi & Green, 2007) lors de l’apprentissage d’une langue linguistiquement éloignée (persan-français) sont rapportés dans l’étude III. Les résultats des analyses d’IRMF suivant le modèle linéaire général chez les bilingues de langues linguistiquement proches (français-espagnol) montrent que le traitement des mots phonologiquement similaires dans les deux langues (cognates et clangs) compte sur un réseau neuronal partagé par la langue maternelle (L1) et la L2, tandis que le traitement des mots phonologiquement éloignés (non-clang-non-cognates) active des structures impliquées dans le traitement de la mémoire de travail et d'attention. Toutefois, chez les personnes bilingues de L1-L2 linguistiquement éloignées (français-persan), même les mots phonologiquement similaires à travers les langues (cognates et clangs) activent des régions connues pour être impliquées dans l'attention et le contrôle cognitif. Par ailleurs, les mots phonologiquement éloignés (non-clang-non-cognates) activent des régions usuellement associées à la mémoire de travail et aux fonctions exécutives. Ainsi, le facteur de distance inter-linguistique entre L1 et L2 module la charge cognitive sur la base du degré de similarité phonologiques entres les items en L1 et L2. Des structures soutenant les processus impliqués dans le traitement exécutif sont recrutées afin de compenser pour des demandes cognitives. Lorsque la compétence linguistique en L2 augmente et que les tâches linguistiques exigent ainsi moins d’effort, la demande pour les ressources cognitives diminue. Tel que déjà rapporté (Majerus, et al, 2008; Prat, et al, 2007; Veroude, et al, 2010; Dodel, et al, 2005; Coynel, et al ., 2009), les résultats des analyses de connectivité fonctionnelle montrent qu’après l’entraînement la valeur d'intégration (connectivité fonctionnelle) diminue puisqu’il y a moins de circulation du flux d'information. Les résultats de cette recherche contribuent à une meilleure compréhension des aspects neurocognitifs et de plasticité cérébrale du TIL ainsi que l'impact de la distance linguistique dans l'apprentissage des langues. Ces résultats ont des implications dans les stratégies d'apprentissage d’une L2, les méthodes d’enseignement d’une L2 ainsi que le développement d'approches thérapeutiques chez des patients bilingues qui souffrent de troubles langagiers.
Resumo:
L’intégration des soins et des services de santé est vue autant, par les décideurs, par les professionnels que par les usagers, comme une nécessité pour assurer une meilleure accessibilité, pour favoriser la continuité et la coordination et pour améliorer la qualité des soins et services tout en contrôlant les coûts. Depuis près de deux décennies, des réseaux intégrés de soins et de services de santé se développent dans les pays de l’OCDE. Ce phénomène a généré une littérature plutôt abondante sur les conditions organisationnelles supportant l’intégration des soins et plus récemment, sur l’importance du rôle et de la place des professionnels dans ces structures. Les données empiriques et les écrits mettent en évidence que les infirmières ont joué un rôle important dans la mise en place des réseaux intégrés de services depuis leurs débuts. Cette étude vise à identifier les pratiques stratégiques des infirmières qui sont impliquées dans des réseaux intégrés de services de santé et de comprendre comment ces pratiques favorisent des apprentissages organisationnels permettant l’ajustement des pratiques de l’ensemble des intervenants dans le sens de l’intégration clinique. Elle vise aussi à mettre en évidence les facteurs individuels et organisationnels impliqués dans le développement de ces pratiques et dans le processus d’apprentissage organisationnel. Une revue des écrits sur les réseaux de services intégrés et sur l’intégration clinique, ainsi que sur l’apprentissage organisationnel et sur l’analyse stratégique a confirmé que ces écrits, tout en étant complémentaires, soutenaient les objectifs de cette étude. En effet, les écrits sur l’intégration présentent des déterminants de l’intégration sans aborder les pratiques stratégiques et sont discrets sur l’apprentissage organisationnel. Les écrits sur l’apprentissage organisationnel abordent le processus d’apprentissage, mais ne décrivent pas les pratiques favorisant l’apprentissage organisationnel et sont peu loquaces sur les facteurs influençant l’apprentissage organisationnel. Enfin, les écrits sur l’analyse stratégique discutent des systèmes et des processus dynamiques en incluant les conditions individuelles et organisationnelles, mais ne font pas allusion à l’apprentissage organisationnel. Afin de découvrir les pratiques stratégiques ainsi que les apprentissages organisationnels, et de comprendre le processus d’apprentissage et les facteurs impliqués dans celui-ci, nous avons eu recours à un devis d’étude de cas multiples où nous nous sommes attardés à étudier les pratiques d’infirmières évoluant dans quatre situations visant l’intégration clinique. Ces situations faisaient partie de trois réseaux intégrés de services de santé impliquant des professionnels de différentes disciplines rattachés soit, à un centre hospitalier ou à un centre local de services communautaires. Trois études de cas ont été rédigées à partir des informations émanant des différentes sources de données. Dans le cadre de cette étude, quatre sources de données ont été utilisées soit : des entrevues individuelles avec des infirmières, d’autres professionnels et des gestionnaires (n=60), des entrevues de groupe (n=3), des séances d’observations (n=12) et l’étude de documents d’archives (n=96). À l’aide des données empiriques recueillies, il a été possible de découvrir quinze pratiques stratégiques et de préciser la nature des apprentissages qu'elles généraient. L’analyse des cas a également permis de mieux comprendre le rapport entre les pratiques stratégiques et les apprentissages organisationnels et d’apporter des précisions sur le processus d’apprentissage organisationnel. Cette étude contribue à la pratique et à la recherche, car en plus d’offrir un modèle d’apprentissage organisationnel intégré, elle précise que le processus d’apprentissage organisationnel est propulsé grâce à des boucles d’apprentissages stimulées par des pratiques stratégiques, que ces pratiques stratégiques s’actualisent grâce aux ressources individuelles des infirmières et aux facteurs organisationnels et enfin, que ces apprentissages organisationnels favorisent des changements de pratiques soutenant l’intégration clinique.
Resumo:
Objective: To portray an information literacy programme demonstrating a high level of integration in health sciences curricula and a teaching orientation aiming towards the development of lifelong learning skills. The setting is a French-speaking North American university. Methods: The offering includes standard workshops such as MEDLINE searching and specialised sessions such as pharmaceutical patents searching. A contribution to an international teaching collaboration in Haiti where workshops had to be thoroughly adapted to the clientele is also presented. Online guides addressing information literacy topics complement the programme. Results and evaluation: A small team of librarians and technicians taught 276 hours of library instruction during the 2011-2012 academic year. Methods used for evaluating information skills include scoring features of literature searches and user satisfaction surveys. Discussion: Privileged contacts between librarians and faculty resulting from embedded library instruction as well as from active participation in library committees result in a growing reputation of library services across academic departments and bring forth collaboration opportunities. Sustainability and evolution of the library instruction programme is warranted by frequent communication with partners in the clinical field, active involvement in academic networks and health library associations, and reflective professional strategies.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
Les infirmiers doivent maintenir leurs connaissances à jour et poursuivre le développement de leurs compétences. Toutefois, dans le contexte actuel de pénurie d’infirmiers, la formation continue représente un défi pour eux. Or, le e-learning semble offrir un potentiel intéressant pour relever ce défi. Une étude qualitative basée sur la méthode des incidents critiques visait à décrire l’expérience clinique d’infirmiers (n=4) suite à un cours e-learning sur l’enseignement à la clientèle. Ce cours de 45 heures était basé sur l’approche par compétences. Des entrevues individuelles ont permis de documenter l’acquisition et l’utilisation en contexte clinique d’apprentissages effectués durant le cours. Les résultats révèlent que ce cours e-learning a permis aux infirmiers qui ont participé à l’étude (n=4) d’acquérir des ressources (connaissances et habiletés) et de les utiliser dans des situations cliniques d’enseignement à la clientèle. Les stratégies pédagogiques, qui apparaissent les plus prometteuses, à la lumière des résultats, sont la discussion de situations cliniques sur le forum de discussion « en ligne » et le projet de mise en contexte réel. En somme, le e-learning, basé sur l’approche par compétences se révèle une approche pédagogique prometteuse pour soutenir le développement des compétences des infirmiers. Mots clés : e-learning, formation continue, stratégies pédagogiques, approche par compétences
Resumo:
Les restructurations et les mutations de plus en plus nombreuses dans les entreprises font évoluer la trajectoire de carrière des employés vers un cheminement moins linéaire et amènent une multiplication des changements de rôle (Delobbe & Vandenberghe, 2000). Les organisations doivent de plus en plus se soucier de l’intégration de ces nouveaux employés afin de leur transmettre les éléments fondamentaux du fonctionnement et de la culture qu’elles privilégient. Par contre, la plupart des recherches sur la socialisation organisationnelle portent sur les « meilleures pratiques », et les résultats qui en découlent sont mixtes. Cette étude comparative cherche à déterminer si et sur quelles variables les nouveaux employés socialisés par leur entreprise diffèrent des nouveaux employés « non socialisés ». Premièrement, cette étude vise à comparer ces deux groupes sur 1) les résultantes proximales (la maîtrise du contenu de la socialisation organisationnelle et la clarté de rôle) et 2) les résultantes distales (l’engagement organisationnel affectif, la satisfaction au travail et l’intention de quitter) du processus de socialisation organisationnelle, ainsi que sur 3) les caractéristiques des réseaux sociaux d’information, en contrôlant pour la proactivité. Dans un second temps, cette étude a pour objectif d’explorer si le processus de socialisation organisationnelle (les relations entre les variables) diffère entre les nouveaux employés socialisés ou non. Cinquante-trois nouveaux employés (moins d’un an d’ancienneté) d’une grande entreprise québécoise ont participé à cette étude. L’entreprise a un programme de socialisation en place, mais son exécution est laissée à la discrétion de chaque département, créant deux catégories de nouveaux employés : ceux qui ont été socialisés par leur département, et ceux qui n’ont pas été socialisés (« non socialisés »). Les participants ont été sondés sur les stratégies proactives, les résultantes proximales et distales et les caractéristiques des réseaux sociaux d’information. Pour le premier objectif, les résultats indiquent que les nouveaux employés socialisés maîtrisent mieux le contenu de la socialisation organisationnelle que les nouveaux employés non socialisés. En ce qui a trait au deuxième objectif, des différences dans le processus de socialisation organisationnelle ont été trouvées. Pour les nouveaux employés « non socialisés », la recherche proactive d’informations et la recherche de rétroaction sont liées à certaines caractéristiques des réseaux sociaux, alors que le cadrage positif est lié à la satisfaction au travail et à l’intention de quitter, et que la clarté de rôle est liée uniquement à la satisfaction au travail. Les nouveaux employés socialisés, quant à eux, démontrent des liens entre la maîtrise du contenu de la socialisation organisationnelle et chacune des résultantes distales (l’engagement organisationnel affectif, la satisfaction au travail et l’intention de quitter). Globalement, l’intégration des nouveaux employés non socialisés serait plutôt influencée par leurs stratégies proactives, tandis que celle des nouveaux employés non socialisés serait facilitée par leur maîtrise du contenu de la socialisation organisationnelle. De façon générale, cette étude comparative offre un aperçu intéressant des nouveaux employés rarement trouvé dans les recherches portant sur les « meilleures pratiques » de la socialisation organisationnelle. Des recommandations pour la recherche et la pratique en suivent.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.