5 resultados para Parametric Models
em Université de Montréal, Canada
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
L'objectif principal de ce travail est d’étudier en profondeur certaines techniques biostatistiques avancées en recherche évaluative en chirurgie cardiaque adulte. Les études ont été conçues pour intégrer les concepts d'analyse de survie, analyse de régression avec “propensity score”, et analyse de coûts. Le premier manuscrit évalue la survie après la réparation chirurgicale de la dissection aigüe de l’aorte ascendante. Les analyses statistiques utilisées comprennent : analyses de survie avec régression paramétrique des phases de risque et d'autres méthodes paramétriques (exponentielle, Weibull), semi-paramétriques (Cox) ou non-paramétriques (Kaplan-Meier) ; survie comparée à une cohorte appariée pour l’âge, le sexe et la race utilisant des tables de statistiques de survie gouvernementales ; modèles de régression avec “bootstrapping” et “multinomial logit model”. L'étude a démontrée que la survie s'est améliorée sur 25 ans en lien avec des changements dans les techniques chirurgicales et d’imagerie diagnostique. Le second manuscrit est axé sur les résultats des pontages coronariens isolés chez des patients ayant des antécédents d'intervention coronarienne percutanée. Les analyses statistiques utilisées comprennent : modèles de régression avec “propensity score” ; algorithme complexe d'appariement (1:3) ; analyses statistiques appropriées pour les groupes appariés (différences standardisées, “generalized estimating equations”, modèle de Cox stratifié). L'étude a démontrée que l’intervention coronarienne percutanée subie 14 jours ou plus avant la chirurgie de pontages coronariens n'est pas associée à des résultats négatifs à court ou long terme. Le troisième manuscrit évalue les conséquences financières et les changements démographiques survenant pour un centre hospitalier universitaire suite à la mise en place d'un programme de chirurgie cardiaque satellite. Les analyses statistiques utilisées comprennent : modèles de régression multivariée “two-way” ANOVA (logistique, linéaire ou ordinale) ; “propensity score” ; analyses de coûts avec modèles paramétriques Log-Normal. Des modèles d’analyse de « survie » ont également été explorés, utilisant les «coûts» au lieu du « temps » comme variable dépendante, et ont menés à des conclusions similaires. L'étude a démontrée que, après la mise en place du programme satellite, moins de patients de faible complexité étaient référés de la région du programme satellite au centre hospitalier universitaire, avec une augmentation de la charge de travail infirmier et des coûts.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Understanding the dynamics of interest rates and the term structure has important implications for issues as diverse as real economic activity, monetary policy, pricing of interest rate derivative securities and public debt financing. Our paper follows a longstanding tradition of using factor models of interest rates but proposes a semi-parametric procedure to model interest rates.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.