5 resultados para Nonparametric regression techniques

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The focus of the paper is the nonparametric estimation of an instrumental regression function P defined by conditional moment restrictions stemming from a structural econometric model : E[Y-P(Z)|W]=0 and involving endogenous variables Y and Z and instruments W. The function P is the solution of an ill-posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyses identification and overidentification of this model and presents asymptotic properties of the estimated nonparametric instrumental regression function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones en lignes et/ou en colonnes, pour une éventuelle application sur les tables de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons la forme fonctionnelle des données par splines bidimensionnelles. L’objectif consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace d’entreposage de la table en minimisant la perte d’information. De même, nous désirons étudier le temps nécessaire pour reconstituer la table. L’approximation doit conserver les mêmes propriétés que la table de référence, en particulier la monotonie des données. Nous travaillons avec une base de fonctions splines monotones afin d’imposer plus facilement la monotonie au modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite, nous indiquons comment obtenir un estimateur a posteriori à l’aide des méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le comportement de notre estimateur en modélisant une table de la loi normale ainsi qu’une table t de distribution de Student. L’estimation de nos données d’intérêt, soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.