3 resultados para Neumann, Johann Ernst.

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following properties of the core of a one well-known: (i) the core is non-empty; (ii) the core is a lattice; and (iii) the set of unmatched agents is identical for any two matchings belonging to the core. The literature on two-sided matching focuses almost exclusively on the core and studies extensively its properties. Our main result is the following characterization of (von Neumann-Morgenstern) stable sets in one-to-one matching problem only if it is a maximal set satisfying the following properties : (a) the core is a subset of the set; (b) the set is a lattice; (c) the set of unmatched agents is identical for any two matchings belonging to the set. Furthermore, a set is a stable set if it is the unique maximal set satisfying properties (a), (b) and (c). We also show that our main result does not extend from one-to-one matching problems to many-to-one matching problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les façons d'aborder l'étude du spectre du laplacien sont multiples. Ce mémoire se concentre sur les partitions spectrales optimales de domaines planaires. Plus précisément, lorsque nous imposons des conditions aux limites de Dirichlet, nous cherchons à trouver la ou les partitions qui réalisent l'infimum (sur l'ensemble des partitions à un certain nombre de composantes) du maximum de la première valeur propre du laplacien sur tous ses sous-domaines. Dans les dernières années, cette question a été activement étudiée par B. Helffer, T. Hoffmann-Ostenhof, S. Terracini et leurs collaborateurs, qui ont obtenu plusieurs résultats analytiques et numériques importants. Dans ce mémoire, nous proposons un problème analogue, mais pour des conditions aux limites de Neumann cette fois. Dans ce contexte, nous nous intéressons aux partitions spectrales maximales plutôt que minimales. Nous cherchons alors à vérifier le maximum sur toutes les $k$-partitions possibles du minimum de la première valeur propre non nulle de chacune des composantes. Cette question s'avère plus difficile que sa semblable dans la mesure où plusieurs propriétés des valeurs propres de Dirichlet, telles que la monotonicité par rapport au domaine, ne tiennent plus. Néanmoins, quelques résultats sont obtenus pour des 2-partitions de domaines symétriques et des partitions spécifiques sont trouvées analytiquement pour des domaines rectangulaires. En outre, des propriétés générales des partitions spectrales optimales et des problèmes ouverts sont abordés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ernst Zermelo presented an argument showing that there is no set of all sets that are members of themselves in a letter to Edmund Husserl on April 16th of 1902, and so just barely anticipated the same contradiction in Betrand Russell’s letter to Frege from June 16th of that year. This paper traces the origins of Zermelo’s paradox in Husserl’s criticisms of a peculiar argument in Ernst Schroeder’s 1890 Algebra der Logik. Frege had also criticized that argument in his 1985 “A Critical Elucidation of Some Points in E. Schroeder Vorlesungen über die Algebra der Logik”, but did not see the paradox that Zermelo found. Alonzo Church, in “Schroeder’s Anticipation of the Simple Theory of Types” from 1939, cricized Frege’s treatment of Schroeder’s views, but did not identify the connection with Russell’s paradox.