8 resultados para Learning methods

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire est composé de trois articles et présente les résultats de travaux de recherche effectués dans le but d'améliorer les techniques actuelles permettant d'utiliser des données associées à certaines tâches dans le but d'aider à l'entraînement de réseaux de neurones sur une tâche différente. Les deux premiers articles présentent de nouveaux ensembles de données créés pour permettre une meilleure évaluation de ce type de techniques d'apprentissage machine. Le premier article introduit une suite d'ensembles de données pour la tâche de reconnaissance automatique de chiffres écrits à la main. Ces ensembles de données ont été générés à partir d'un ensemble de données déjà existant, MNIST, auquel des nouveaux facteurs de variation ont été ajoutés. Le deuxième article introduit un ensemble de données pour la tâche de reconnaissance automatique d'expressions faciales. Cet ensemble de données est composé d'images de visages qui ont été collectées automatiquement à partir du Web et ensuite étiquetées. Le troisième et dernier article présente deux nouvelles approches, dans le contexte de l'apprentissage multi-tâches, pour tirer avantage de données pour une tâche donnée afin d'améliorer les performances d'un modèle sur une tâche différente. La première approche est une généralisation des neurones Maxout récemment proposées alors que la deuxième consiste en l'application dans un contexte supervisé d'une technique permettant d'inciter des neurones à apprendre des fonctions orthogonales, à l'origine proposée pour utilisation dans un contexte semi-supervisé.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapport de stage présenté à la Faculté des sciences infirmières en vue de l’obtention du grade de Maître ès sciences (M. Sc.) en sciences infirmières option formation en sciences infirmières

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les tendances de la participation à la formation des adultes au Canada n’ont pas évolué depuis des décennies, malgré les nouvelles influences économiques qui ont stimulé l’augmentation et la diversification permanente de la formation des employés et malgré les initiatives plus nombreuses en faveur de l’apprentissage des employés en milieu de travail. Il est donc nécessaire de ne plus se contenter d’étudier les prédicteurs de la formation déjà connus dans les profils des employés et des employeurs. Il est, en revanche, indispensable d’étudier les antécédents de la participation des employés à la formation, y compris les aspects et les étapes du processus qui la précède. Cette étude porte sur les antécédents de la participation des employés aux formations dans un important collège communautaire urbain en Ontario. Afin de préparer le recueil des données, un cadre théorique a été élaboré à partir du concept d’expression de la demande. Ce cadre implique l’existence d’un processus qui comporte plusieurs étapes, au cours desquelles plusieurs intervenants interagissent et dont la formation est susceptible d’être le résultat. Les résultats de l’enquête sur le profil d’apprentissage ont permis de conclure que le comportement des employés et de l’employeur est conforme aux modèles de prédicteurs existants et que les taux et les types de participation étaient similaires aux tendances nationales et internationales. L’analyse des entrevues d’un groupe d’employés atypiques, de leurs superviseurs, ainsi que de représentants du collège et du syndicat, a révélé d’importants thèmes clés : l’expression de la demande n’est pas structurée et elle est communiquée par plusieurs canaux, en excluant parfois les superviseurs. De plus, la place de l’auto évaluation est importante, ainsi que la phase de prise de décision. Ces thèmes ont souligné l’interaction de plusieurs intervenants dans le processus d’expression de la demande d’apprentissage et pendant la prise de décision. L’examen des attentes de chacun de ces intervenants au cours de ce processus nous a permis de découvrir un désir tacite chez les superviseurs et les employés, à savoir que la conversation soit à l’initiative de « l’autre ». Ces thèmes clés ont été ensuite abordés dans une discussion qui a révélé une discordance entre le profil de l’employeur et les profils des employés. Celle-ci se prête à la correction par l’employeur de son profil institutionnel pour l’harmoniser avec le profil dispositionnel des employés et optimiser ainsi vraisemblablement son offre de formation. Ils doivent, pour cela, appliquer un processus plus systématique et plus structuré, doté de meilleurs outils. La discussion a porté finalement sur les effets des motivations économiques sur la participation des employés et a permis de conclure que, bien que les employés ne semblent pas se méfier de l’offre de formation de l’employeur et que celle ci ne semble pas non plus les décourager, des questions de pouvoir sont bel et bien en jeu. Elles se sont principalement manifestées pendant le processus de prise de décision et, à cet égard, les superviseurs comme les employés reconnaissent qu’un processus plus structuré serait bénéfique, puisqu’il atténuerait les problèmes d’asymétrie et d’ambiguïté. Les constatations de cette étude sont pertinentes pour le secteur de la formation des adultes et de la formation en milieu de travail et, plus particulièrement, pour la méthodologie de recherche. Nous avons constaté l’avantage d’une méthodologie à deux volets, à l’écoute de l’employeur et des employés, afin de mieux comprendre la relation entre l’offre de formation et la participation à la formation. La définition des antécédents de la participation sous la forme d’un processus dans lequel plusieurs intervenants remplissent plusieurs rôles a permis de créer un modèle plus détaillé qui servira à la recherche future. Ce dernier a démontré qu’il est indispensable de reconnaître que la prise de décision constitue une étape à part entière, située entre l’expression de la demande et la participation à la formation. Ces constatations ont également révélé qu’il est véritablement indispensable que le secteur de la formation des adultes continue à traiter les questions reliées à la reconnaissance de la formation informelle. Ces conclusions et la discussion sur les constatations clés nous ont inspiré des recommandations à appliquer pour modifier les retombées du processus précédant la participation des employés à la formation. La majorité de ces recommandations ont trait à l’infrastructure de ce processus et ciblent donc principalement l’employeur. Certaines recommandations sont cependant destinées aux syndicats, aux superviseurs et aux employés qui peuvent aider l’employeur à remplir son rôle et favoriser la participation efficace de tous à ce processus. Les recommandations qui précédent impliquent que ce sont les antécédents de la formation qui gagneraient à être plus structurés et non la formation elle même. La structuration de l’infrastructure de l’apprentissage présente cependant des risques à elle seule. En liaison avec ce phénomène, une étude spécifique des effets de la nature, de la qualité et de l’asymétrie de la relation superviseur employé sur la participation des employés à la formation serait bénéfique. Mots clés : formation en entreprise, formation professionnelle continue, antécédents à la participation, employés de soutien

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette lecture, tant critique, comparative, et théorique que pédagogique, s’ancre dans le constat, premièrement, qu’il advient aux étudiantEs en littérature de se (re)poser la question des coûts et complicités qu’apprendre à lire et à écrire présuppose aujourd’hui; deuxièmement, que nos pratiques littéraires se trament au sein de lieux empreints de différences, que l’on peut nommer, selon le contexte, métaphore, récit, ville; et, troisièmement, que les efforts et investissements requis sont tout autant couteux et interminable qu’un plaisir et une nécessité politique. Ces conclusions tendent vers l’abstrait et le théorique, mais le langage en lequel elles sont articulées, langage corporel et urbain, de la dépendance et de la violence, cherche d’autant plus une qualité matérielle et concrète. Or, l’introduction propose un survol des lectures et comparaisons de Heroine de Gail Scott qui centre ce projet; identifie les contextes institutionnels, historiques, et personnels qui risquent, ensuite, de décentrer celui-ci. Le premier chapitre permet de cerner le matérialisme littéraire qui me sert de méthode par laquelle la littérature, à la fois, sollicite et offre une réponse à ces interrogations théoriques. Inspirée de l’œuvre de Gail Scott et Réjean Ducharme, premièrement, et de Walter Benjamin, Elisabeth Grosz, et Pierre Macherey ensuite, ‘matérialisme’ fait référence à cette collection de figures de pratiques littéraires et urbaines qui proviennent, par exemple, de Georges Perec, Michel DeCerteau, Barbara Johnson, et Patricia Smart, et qui invitent ensuite une réflexions sur les relations entre corporalité et narrativité, entre la nécessité et la contingence du littéraire. De plus, une collection de figures d’un Montréal littéraire et d’une cité pédagogique, acquis des œuvres de Zygmunt Bauman, Partricia Godbout, et Lewis Mumford, constitue en effet un vocabulaire nous permettant de mieux découvrir (et donc enseigner) ce que lire et apprendre requiert. Le deuxième chapitre propose une lecture comparée de Heroine et des romans des auteures québécoises Anne Dandurand, Marie Gagnon, et Tess Fragoulis, dans le contexte, premièrement, les débats entourant l’institutionnalisation de la littérature (anglo)Québécoise et, deuxièmement, des questions pédagogiques et politiques plus larges et plus urgentes que nous pose, encore aujourd’hui, cette violence récurrente qui s’acharna, par exemple, sur la Polytechnique en 1989. Or, cette intersection de la violence meurtrière, la pratique littéraire, et la pédagogie qui en résulte se pose et s’articule, encore, par le biais d’une collection de figures de styles. En fait, à travers le roman de Scott et de l’œuvre critique qui en fait la lecture, une série de craques invite à reconnaître Heroine comme étant, ce que j’appelle, un récit de dépendance, au sein duquel se concrétise une temporalité récursive et une logique d’introjection nous permettant de mieux comprendre la violence et, par conséquent, le pouvoir d’une pratique littéraire sur laquelle, ensuite, j’appuie ma pédagogie en devenir. Jetant, finalement, un regard rétrospectif sur l’oeuvre dans son entier, la conclusion de ce projet se tourne aussi vers l’avant, c’est-à-dire, vers ce que mes lectures dites matérialistes de la littérature canadienne et québécoise contribuent à mon enseignement de la langue anglaise en Corée du Sud. C’est dans ce contexte que les propos de Jacques Rancière occasionnent un dernier questionnement quant à l’historique des débats et des structures pédagogiques en Corée, d’une part, et, de l’autre, les conclusions que cette lecture de la fiction théorique de Gail Scott nous livre.