6 resultados para INTELLIGENT TRANSPORT SYSTEMS
em Université de Montréal, Canada
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Cette thèse vise à définir une nouvelle méthode d’enseignement pour les systèmes tutoriels intelligents dans le but d’améliorer l’acquisition des connaissances. L’apprentissage est un phénomène complexe faisant intervenir des mécanismes émotionnels et cognitifs de nature consciente et inconsciente. Nous nous intéressons à mieux comprendre les mécanismes inconscients du raisonnement lors de l’acquisition des connaissances. L’importance de ces processus inconscients pour le raisonnement est bien documentée en neurosciences, mais demeure encore largement inexplorée dans notre domaine de recherche. Dans cette thèse, nous proposons la mise en place d’une nouvelle approche pédagogique dans le domaine de l’éducation implémentant une taxonomie neuroscientifique de la perception humaine. Nous montrons que cette nouvelle approche agit sur le raisonnement et, à tour de rôle, améliore l’apprentissage général et l’induction de la connaissance dans un environnement de résolution de problème. Dans une première partie, nous présentons l’implémentation de notre nouvelle méthode dans un système tutoriel visant à améliorer le raisonnement pour un meilleur apprentissage. De plus, compte tenu de l’importance des mécanismes émotionnels dans l’apprentissage, nous avons également procédé dans cette partie à la mesure des émotions par des capteurs physiologiques. L’efficacité de notre méthode pour l’apprentissage et son impact positif observé sur les émotions a été validée sur trente et un participants. Dans une seconde partie, nous allons plus loin dans notre recherche en adaptant notre méthode visant à améliorer le raisonnement pour une meilleure induction de la connaissance. L’induction est un type de raisonnement qui permet de construire des règles générales à partir d’exemples spécifiques ou de faits particuliers. Afin de mieux comprendre l’impact de notre méthode sur les processus cognitifs impliqués dans ce type de raisonnement, nous avons eu recours à des capteurs cérébraux pour mesurer l’activité du cerveau des utilisateurs. La validation de notre approche réalisée sur quarante-trois volontaires montre l’efficacité de notre méthode pour l’induction de la connaissance et la viabilité de mesurer le raisonnement par des mesures cérébrales suite à l’application appropriée d’algorithmes de traitement de signal. Suite à ces deux parties, nous clorons la thèse par une discussion applicative en décrivant la mise en place d’un nouveau système tutoriel intelligent intégrant les résultats de nos travaux.
Resumo:
Le myo-inositol (MI) est un soluté organique impliqué dans diverses fonctions physiologiques de la cellule dont la signalisation cellulaire. Il est également un osmolyte compatible reconnu. Trois co-transporteurs de type actif secondaire responsables de son absorption ont été identifiés. Deux d’entre eux sont couplés au transport du sodium (SMIT1 et SMIT2) et le troisième est couplé au transport de protons (HMIT). L’objectif de cette étude a été la caractérisation du transport du MI par SMIT2 dans des membranes en bordure en brosse (BBMv) issues du rein de lapin et de l’intestin de rat ainsi qu’après expression dans les ovocytes de Xenopus laevis. La quantification de l’ARNm de SMIT1 et de SMIT2 dans le rein nous a appris que SMIT1 est majoritairement présent dans la médullaire alors que SMIT2 est principalement localisé dans le cortex. Ces résultats ont été confirmés par immunobuvardage en utilisant un anticorps dirigé contre SMIT2. Grâce à l’inhibition sélective de SMIT1 par le L-Fucose et de SMIT2 par le D-chiro-inositol (DCI), nous avons démontré que SMIT2 semble le seul responsable du transport luminal de MI dans le tubule contourné proximal avec un Km de 57 ± 14 µM. Pour ce qui est de l’intestin, des études de transport de MI radioactif ont démontré une absence de transport de MI chez le lapin alors que l’intestin de rat présente un transport de MI très actif. Une quantification par qRT-PCR nous a permis de constater que l’intestin de lapin ne semble pas posséder les transporteurs de MI nécessaires. Comme pour le rein, SMIT2 semble le seul transporteur de MI présent au niveau du pôle apical des entérocytes intestinaux chez le rat. Il est chargé du prélèvement du MI de l'alimentation avec un Km de 150 ± 40 µM. Les analyses fonctionnelles exécutées sur SMIT2 de rat en électrophysiologie après expression dans les ovocytes de Xenopus laevis donnent sensiblement les mêmes résultats que pour les BBMv de rein de lapin et d’intestin de rat. Dans les ovocytes, SMIT2 présente une grande affinité pour le MI (270 ± 19 µM) et le DCI (310 ± 60 µM) et aucune affinité pour le L-fucose. Il est ii également très sensible à la phlorizine (16 ± 7 µM). Une seule exception persiste : la constante d’affinité pour le glucose dans les BBMv d’intestin de rat est 40 fois plus petite que celle observée sur les ovocytes de Xenopus laevis. Nous avons également testé la capacité de certains transporteurs de sucre présents à la surface des membranes apicales des entérocytes à prélever le MI. Vu que l'inhibition de ces transporteurs (SGLT1 et GLUT5) ne changeait rien au taux de MI radioactif transporté, nous en avons conclu qu'ils ne sont pas impliqués dans son transport. Finalement, l’efflux de MI à partir du pôle basolatéral des entérocytes n’est pas effectué par GLUT2 puisque ce dernier lorsqu'il est exprimé dans des ovocytes, est incapable de transporter le MI.
Resumo:
La motivation incite les apprenants à s’engager dans une activité et à persévérer dans son accomplissement afin d’atteindre un but. Dans les Systèmes Tutoriels Intelligents (STI), les études sur la motivation des apprenants possèdent trois manques importants : un manque de moyens objectifs et fiables pour évaluer cet état, un manque d’évaluation de rôles joués par les facteurs motivationnels conçus dans l’environnement d’apprentissage et un manque de stratégies d’interventions motivationnelles pour soutenir la motivation des apprenants. Dans cette thèse, nous nous intéressons à mieux comprendre l’état de la motivation des apprenant ainsi que les facteurs et stratégies motivationnels dans un environnement d’apprentissage captivant : les jeux sérieux. Dans une première étude, nous évaluons la motivation des apprenants par l’entremise d’un modèle théorique de la motivation (ARCS de Keller) et de données électro-physiologiques (la conductivité de la peau, le rythme cardiaque et l’activité cérébrale). Nous déterminons et évaluons aussi quelques situations ou stratégies favorisant la motivation dans l’environnement des jeux sérieux étudié. Dans une deuxième étude, nous développons un prototype de jeux sérieux intégrant – dans une première version – quelques éléments motivationnels issus de jeux vidéo et – dans une deuxième version – des stratégies motivationnelles d’un modèle théorique de la motivation. Nous espérons, avec une évaluation motivationnelle de notre prototype, soutenir les apprenants à atteindre des hauts niveaux de motivation, de persévérance et de performance.
Resumo:
La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions. Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine. Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage. Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants.
Resumo:
Les récents avancements en sciences cognitives, psychologie et neurosciences, ont démontré que les émotions et les processus cognitifs sont intimement reliés. Ce constat a donné lieu à une nouvelle génération de Systèmes Tutoriels Intelligents (STI) dont la logique d’adaptation repose sur une considération de la dimension émotionnelle et affective de l’apprenant. Ces systèmes, connus sous le nom de Systèmes Tutoriels Émotionnellement Intelligents (STEI), cherchent à se doter des facultés des tuteurs humains dans leurs capacités à détecter, comprendre et s’adapter intuitivement en fonction de l’état émotionnel des apprenants. Toutefois, en dépit du nombre important de travaux portant sur la modélisation émotionnelle, les différents résultats empiriques ont démontré que les STEI actuels n’arrivent pas à avoir un impact significatif sur les performances et les réactions émotionnelles des apprenants. Ces limites sont principalement dues à la complexité du concept émotionnel qui rend sa modélisation difficile et son interprétation ambiguë. Dans cette thèse, nous proposons d’augmenter les STEI des indicateurs d’états mentaux d’engagement et de charge mentale de travail. Ces états mentaux ont l’avantage d’englober à la fois une dimension affective et cognitive. Pour cela, nous allons, dans une première partie, présenter une approche de modélisation de ces indicateurs à partir des données de l’activité cérébrale des apprenants. Dans une seconde partie, nous allons intégrer ces modèles dans un STEI capable d’adapter en temps réel le processus d’apprentissage en fonction de ces indicateurs.