11 resultados para Geometry-free and ionosphere-free
em Université de Montréal, Canada
Resumo:
Depuis la révolution industrielle, l’évolution de la technologie bouleverse le monde de la fabrication. Aujourd'hui, de nouvelles technologies telles que le prototypage rapide font une percée dans des domaines comme celui de la fabrication de bijoux, appartenant jadis à l'artisanat et en bouscule les traditions par l'introduction de méthodes plus rapides et plus faciles. Cette recherche vise à répondre aux deux questions suivantes : - ‘En quoi le prototypage rapide influence-t-il la pratique de fabrication de bijoux?’ - ‘En quoi influence-t-il de potentiels acheteurs dans leur appréciation du bijou?’ L' approche consiste en une collecte de données faite au cours de trois entretiens avec différents bijoutiers et une rencontre de deux groupes de discussion composés de consommateurs potentiels. Les résultats ont révélé l’utilité du prototypage rapide pour surmonter un certain nombre d'obstacles inhérents au fait-main, tel que dans sa géométrie, sa commercialisation, et sa finesse de détails. Cependant, il se crée une distance entre la main du bijoutier et l'objet, changeant ainsi la nature de la pratique. Cette technologie est perçue comme un moyen moins authentique car la machine rappelle la production de masse et la possibilité de reproduction en série détruit la notion d’unicité du bijou, en réduisant ainsi sa charge émotionnelle. Cette recherche propose une meilleure compréhension de l'utilisation du prototypage rapide et de ses conséquences dans la fabrication de bijoux. Peut-être ouvrira-t-elle la voie à une recherche visant un meilleur mariage entre cette technique et les méthodes traditionnelles.
Resumo:
Le réalisme des images en infographie exige de créer des objets (ou des scènes) de plus en plus complexes, ce qui entraîne des coûts considérables. La modélisation procédurale peut aider à automatiser le processus de création, à simplifier le processus de modification ou à générer de multiples variantes d'une instance d'objet. Cependant même si plusieurs méthodes procédurales existent, aucune méthode unique permet de créer tous les types d'objets complexes, dont en particulier un édifice complet. Les travaux réalisés dans le cadre de cette thèse proposent deux solutions au problème de la modélisation procédurale: une solution au niveau de la géométrie de base, et l’autre sous forme d'un système général adapté à la modélisation des objets complexes. Premièrement, nous présentons le bloc, une nouvelle primitive de modélisation simple et générale, basée sur une forme cubique généralisée. Les blocs sont disposés et connectés entre eux pour constituer la forme de base des objets, à partir de laquelle est extrait un maillage de contrôle pouvant produire des arêtes lisses et vives. La nature volumétrique des blocs permet une spécification simple de la topologie, ainsi que le support des opérations de CSG entre les blocs. La paramétrisation de la surface, héritée des faces des blocs, fournit un soutien pour les textures et les fonctions de déplacements afin d'appliquer des détails de surface. Une variété d'exemples illustrent la généralité des blocs dans des contextes de modélisation à la fois interactive et procédurale. Deuxièmement, nous présentons un nouveau système de modélisation procédurale qui unifie diverses techniques dans un cadre commun. Notre système repose sur le concept de composants pour définir spatialement et sémantiquement divers éléments. À travers une série de déclarations successives exécutées sur un sous-ensemble de composants obtenus à l'aide de requêtes, nous créons un arbre de composants définissant ultimement un objet dont la géométrie est générée à l'aide des blocs. Nous avons appliqué notre concept de modélisation par composants à la génération d'édifices complets, avec intérieurs et extérieurs cohérents. Ce nouveau système s'avère général et bien adapté pour le partionnement des espaces, l'insertion d'ouvertures (portes et fenêtres), l'intégration d'escaliers, la décoration de façades et de murs, l'agencement de meubles, et diverses autres opérations nécessaires lors de la construction d'un édifice complet.
Resumo:
L’introduction aux concepts unificateurs dans l’enseignement des mathématiques privilégie typiquement l’approche axiomatique. Il n’est pas surprenant de constater qu’une telle approche tend à une algorithmisation des tâches pour augmenter l’efficacité de leur résolution et favoriser la transparence du nouveau concept enseigné (Chevallard, 1991). Cette réponse classique fait néanmoins oublier le rôle unificateur du concept et n’encourage pas à l’utilisation de sa puissance. Afin d’améliorer l’apprentissage d’un concept unificateur, ce travail de thèse étudie la pertinence d’une séquence didactique dans la formation d’ingénieurs centrée sur un concept unificateur de l’algèbre linéaire: la transformation linéaire (TL). La notion d’unification et la question du sens de la linéarité sont abordées à travers l’acquisition de compétences en résolution de problèmes. La séquence des problèmes à résoudre a pour objet le processus de construction d’un concept abstrait (la TL) sur un domaine déjà mathématisé, avec l’intention de dégager l’aspect unificateur de la notion formelle (Astolfi y Drouin, 1992). À partir de résultats de travaux en didactique des sciences et des mathématiques (Dupin 1995; Sfard 1991), nous élaborons des situations didactiques sur la base d’éléments de modélisation, en cherchant à articuler deux façons de concevoir l’objet (« procédurale » et « structurale ») de façon à trouver une stratégie de résolution plus sûre, plus économique et réutilisable. En particulier, nous avons cherché à situer la notion dans différents domaines mathématiques où elle est applicable : arithmétique, géométrique, algébrique et analytique. La séquence vise à développer des liens entre différents cadres mathématiques, et entre différentes représentations de la TL dans les différents registres mathématiques, en s’inspirant notamment dans cette démarche du développement historique de la notion. De plus, la séquence didactique vise à maintenir un équilibre entre le côté applicable des tâches à la pratique professionnelle visée, et le côté théorique propice à la structuration des concepts. L’étude a été conduite avec des étudiants chiliens en formation au génie, dans le premier cours d’algèbre linéaire. Nous avons mené une analyse a priori détaillée afin de renforcer la robustesse de la séquence et de préparer à l’analyse des données. Par l’analyse des réponses au questionnaire d’entrée, des productions des équipes et des commentaires reçus en entrevus, nous avons pu identifier les compétences mathématiques et les niveaux d’explicitation (Caron, 2004) mis à contribution dans l’utilisation de la TL. Les résultats obtenus montrent l’émergence du rôle unificateur de la TL, même chez ceux dont les habitudes en résolution de problèmes mathématiques sont marquées par une orientation procédurale, tant dans l’apprentissage que dans l’enseignement. La séquence didactique a montré son efficacité pour la construction progressive chez les étudiants de la notion de transformation linéaire (TL), avec le sens et les propriétés qui lui sont propres : la TL apparaît ainsi comme un moyen économique de résoudre des problèmes extérieurs à l’algèbre linéaire, ce qui permet aux étudiants d’en abstraire les propriétés sous-jacentes. Par ailleurs, nous avons pu observer que certains concepts enseignés auparavant peuvent agir comme obstacles à l’unification visée. Cela peut ramener les étudiants à leur point de départ, et le rôle de la TL se résume dans ces conditions à révéler des connaissances partielles, plutôt qu’à guider la résolution.
Resumo:
La présente thèse porte sur différentes questions émanant de la géométrie spectrale. Ce domaine des mathématiques fondamentales a pour objet d'établir des liens entre la géométrie et le spectre d'une variété riemannienne. Le spectre d'une variété compacte fermée M munie d'une métrique riemannienne $g$ associée à l'opérateur de Laplace-Beltrami est une suite de nombres non négatifs croissante qui tend vers l’infini. La racine carrée de ces derniers représente une fréquence de vibration de la variété. Cette thèse présente quatre articles touchant divers aspects de la géométrie spectrale. Le premier article, présenté au Chapitre 1 et intitulé « Superlevel sets and nodal extrema of Laplace eigenfunctions », porte sur la géométrie nodale d'opérateurs elliptiques. L’objectif de mes travaux a été de généraliser un résultat de L. Polterovich et de M. Sodin qui établit une borne sur la distribution des extrema nodaux sur une surface riemannienne pour une assez vaste classe de fonctions, incluant, entre autres, les fonctions propres associées à l'opérateur de Laplace-Beltrami. La preuve fournie par ces auteurs n'étant valable que pour les surfaces riemanniennes, je prouve dans ce chapitre une approche indépendante pour les fonctions propres de l’opérateur de Laplace-Beltrami dans le cas des variétés riemanniennes de dimension arbitraire. Les deuxième et troisième articles traitent d'un autre opérateur elliptique, le p-laplacien. Sa particularité réside dans le fait qu'il est non linéaire. Au Chapitre 2, l'article « Principal frequency of the p-laplacian and the inradius of Euclidean domains » se penche sur l'étude de bornes inférieures sur la première valeur propre du problème de Dirichlet du p-laplacien en termes du rayon inscrit d’un domaine euclidien. Plus particulièrement, je prouve que, si p est supérieur à la dimension du domaine, il est possible d'établir une borne inférieure sans aucune hypothèse sur la topologie de ce dernier. L'étude de telles bornes a fait l'objet de nombreux articles par des chercheurs connus, tels que W. K. Haymann, E. Lieb, R. Banuelos et T. Carroll, principalement pour le cas de l'opérateur de Laplace. L'adaptation de ce type de bornes au cas du p-laplacien est abordée dans mon troisième article, « Bounds on the Principal Frequency of the p-Laplacian », présenté au Chapitre 3 de cet ouvrage. Mon quatrième article, « Wolf-Keller theorem for Neumann Eigenvalues », est le fruit d'une collaboration avec Guillaume Roy-Fortin. Le thème central de ce travail gravite autour de l'optimisation de formes dans le contexte du problème aux valeurs limites de Neumann. Le résultat principal de cet article est que les valeurs propres de Neumann ne sont pas toujours maximisées par l'union disjointe de disques arbitraires pour les domaines planaires d'aire fixée. Le tout est présenté au Chapitre 4 de cette thèse.
Resumo:
Rapport de recherche
Resumo:
La pensée égalitariste a traditionnellement promu l’idéal d’un système de santé universel, gratuit et accessible à tous les membres de la société. J’appuie cette position en répliquant tout d’abord à la critique qui prétend que les riches tireraient plus d’avantages que les pauvres de la gratuité du système de santé. J’ouvre ensuite la réflexion sur ce qui me semble être un enjeu crucial pour l’avenir des systèmes modernes de santé : le rationnement de l’offre. Cette idée ne plaît généralement pas à la population, aux décideurs politiques et à de nombreux égalitaristes. Je considère pourtant que les principaux arguments invoqués contre le rationnement sont incohérents ou faussement égalitaristes. La gratuité des services de santé n’est pas incompatible avec la limitation de l’offre publique.