28 resultados para Galilean covariance

em Université de Montréal, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the issue of estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads us to take into account the covariance between the mean and the variance and the variance of the variance, that is, the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely, the QMLE, the GMM and the M-estimation. The ususal univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular, the importance of skewness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La dépression postnatale (DP) est un problème de santé publique très fréquent dans différentes cultures (Affonso et al, 2000). En effet, entre 10% à 15% des mères souffrent d’une symptomatogie dépressive ainsi que l’indiquent Gorman et al. (2004). La prévention de la DP est l’objectif de différents programmes prénatals et postnatals (Dennis, 2005; Lumley et al, 2004). Certains auteurs notent qu’il est difficile d’avoir accès aux femmes à risque après la naissance (Evins et al, 2000; Georgiopoulos et al, 2001). Mais, les femmes fréquentent les centres de santé pendant la grossesse et il est possible d’identifier les cas à risque à partir des symptômes prénataux dépressifs ou somatiques (Riguetti-Veltema et al, 2006); d’autant plus qu’un grand nombre de facteurs de risque de la DP sont présents pendant la grossesse (O’Hara et Gorman, 2004). C’est pourquoi cette étude fut initiée pendant le premier trimestre de la grossesse à partir d’une détection précoce du risque de DP chez n= 529 femmes de classes moyenne et défavorisée, et, cela, au moyen d’un questionnaire validé utilisé à l’aide d’une entrevue. L’étude s’est effectuée dans trois villes : Barcelone, Figueres, et Béziers au cours des années 2003 à 2005. Objectif général : La présente étude vise à évaluer les effets d’un programme prénatal de groupes de rencontre appliqué dans la présente étude chez des couples de classe socioéconomique non favorisée dont les femmes sont considérées comme à risque de dépression postnatale. L’objectif spécifique est de comparer deux groupes de femmes (un groupe expérimental et un groupe témoin) par rapport aux effets du programme prénatal sur les symptômes de dépression postnatale mesurés à partir de la 4ème semaine après l’accouchement avec l’échelle EPDS. Hypothèse: Les femmes participant au programme prénatal de groupe adressé aux couples parentaux, composé de 10 séances hebdomadaires et inspiré d’une orientation psychosomatique présenteront, au moins, un taux de 6% inférieur de cas à risque de dépression postnatale que les femmes qui ne participent pas, et cela, une fois évaluées avec l’échelle EPDS (≥12) 4 semaines après leur accouchement. Matériel et méthode: La présente étude évaluative est basée sur un essai clinique randomisé et longitudinal; il s’étend de la première ou deuxième visite d’échographie pendant la grossesse à un moment situé entre la 4ème et la 12ème semaine postnatale. Les participants à l’étude sont des femmes de classes moyenne et défavorisée identifiées à risque de DP et leur conjoint. Toutes les femmes répondant aux critères d’inclusion à la période du recrutement ont effectué une entrevue de sélection le jour de leur échographie prénatale à l’hôpital (n=529). Seules les femmes indiquant un risque de DP furent sélectionnées (n= 184). Par la suite, elles furent distribuées de manière aléatoire dans deux groupes: expérimental (n=92) et témoin (n=92), au moyen d’un programme informatique appliqué par un statisticien considérant le risque de DP selon le questionnaire validé par Riguetti-Veltema et al. (2006) appliqué à l’aide d’une entrevue. Le programme expérimental consistait en dix séances hebdomadaires de groupe, de deux heures et vingt minutes de durée ; un appel téléphonique entre séances a permis d’assurer la continuité de la participation des sujets. Le groupe témoin a eu accès aux soins habituels. Le programme expérimental commençait à la fin du deuxième trimestre de grossesse et fut appliqué par un médecin et des sages-femmes spécialement préparées au préalable; elles ont dirigé les séances prénatales avec une approche psychosomatique. Les variables associées à la DP (non psychotique) comme la symptomatologie dépressive, le soutien social, le stress et la relation de couple ont été évaluées avant et après la naissance (pré-test/post-test) chez toutes les femmes participantes des deux groupes (GE et GC) utilisant : l’échelle EPDS (Cox et al,1987), le Functional Social Support Questionnaire (Broadhead et al, 1988), l’évaluation du stress de Holmes et Rahe (1967) et, l’échelle d’ajustement dyadique de Spanier (1976). La collecte des données prénatales a eu lieu à l’hôpital, les femmes recevaient les questionnaires à la fin de l’entrevue, les complétaient à la maison et les retournaient au rendez-vous suivant. Les données postnatales ont été envoyées par les femmes utilisant la poste locale. Résultats: Une fois évalués les symptômes dépressifs postnatals avec l’échelle EPDS entre la 4ème et la 12ème semaine postnatale et considérant le risque de DP au point de césure ≥ 12 de l’échelle, le pourcentage de femmes à risque de DP est de 39,34%; globalement, les femmes étudiées présentent un taux élevé de symptomatologie dépressive. Les groupes étant comparables sur toutes les variables prénatales, notons une différence dans l’évaluation postnatale de l’EPDS (≥12) de 11,2% entre le groupe C et le groupe E (45,5% et 34,3%). Et la différence finale entre les moyennes de l’EPDS postnatal est de 1,76 ( =11,10 ±6,05 dans le groupe C et =9,34 ±5,17 dans le groupe E) ; cette différence s’aproche de la limite de la signification (p=0,08). Ceci est dû à un certain nombre de facteurs dont le faible nombre de questionnaires bien complétés à la fin de l’étude. Les femmes du groupe expérimental présentent une diminution significative des symptômes dépressifs (t=2,50 / P= 0,01) comparativement au pré-test et indiquant une amélioration au contraire du groupe témoin sans changement. Les analyses de régression et de covariance montrent que le soutien social postnatal, les symptômes dépressifs prénatals et le stress postnatal ont une relation significative avec les symptômes dépressifs postnatals (P<0,0001 ; P=0.003; P=0.004). La relation du couple n’a pas eu d’impact sur le risque de DP dans la présente étude. Par contre, on constate d’autres résultats secondaires significatifs: moins de naissances prématurées, plus d’accouchements physiologiques et un plus faible taux de somatisations non spécifiques chez les mères du groupe expérimental. Recommandations: Les résultats obtenus nous suggèrent la considération des aspects suivants: 1) il faudrait appliquer les mesures pour détecter le risque de DP à la période prénatale au moment des visites d’échographie dont presque toutes les femmes sont atteignables; il est possible d’utiliser à ce moment un questionnaire de détection validé car, son efficacité semble démontrée; 2) il faudrait intervenir auprès des femmes identifiées à risque à la période prénatale à condition de prolonger le programme préventif après la naissance, tel qu’indiqué par d’autres études et par la demande fréquente des femmes évaluées. L’intervention prénatale de groupe n’est pas suffisante pour éviter le risque de DP chez la totalité des femmes. C’est pourquoi une troisième recommandation consisterait à : 3) ajouter des interventions individuelles pour les cas les plus graves et 4) il paraît nécessaire d’augmenter le soutien social chez des femmes défavorisées vulnérables car cette variable s’est révélée très liée au risque de dépression postnatale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’insuffisance cardiaque (IC), une maladie chronique caractérisée par un mauvais fonctionnement du muscle cardiaque, entraîne des symptômes comme l’essoufflement, l’œdème et la fatigue. L’IC nécessite l’adoption de comportements d’auto-soins pour prévenir les épisodes de décompensation. Le but de cette recherche est d’évaluer l’intervention infirmière motivationnelle selon les stades de changements (MSSC) sur les comportements d’auto-soins chez des patients IC. Afin de guider l’intervention MSSC, la théorie spécifique aux auto-soins chez les patients IC de Riegel et Dickson (2008) a été retenue ainsi que le modèle d’intervention de Bédard et al. (2006) combinant le modèle transthéorique (Prochaska & DiClemente, 1984) et l’entrevue motivationnelle (Miller & Rollnick, 2006). Il s’agit d’un devis expérimental randomisé (pré et post-test) avec groupe contrôle (N = 15/groupe). Les patients du groupe contrôle ont reçu les soins usuels et les patients du groupe intervention (GI) ont reçu l’intervention MSSC durant trois entretiens. Les mesures de résultats ont été collectées à un mois suite à la randomisation par une assistante de recherche aveugle à la randomisation. L’effet de l’intervention a été évalué par des analyses de covariance sur cinq mesures de résultats : la réalisation et la gestion (générale et spécifique à l’IC) des auto-soins, la confiance aux auto-soins (générale et spécifique à l’IC) et la conviction. L’acceptabilité et la faisabilité ont été évaluées. Les résultats indiquent un effet significatif sur la mesure de confiance à effectuer les auto-soins spécifiques à l’IC. La majorité des participants du GI ont progressé dans leurs stades de changement. Ces résultats soulignent le potentiel de cette approche pour favoriser l’adoption des auto-soins mais une étude à plus large échelle est proposée afin d’évaluer l’effet de cette approche dans un essai clinique randomisé.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La dernière décennie a connu un intérêt croissant pour les problèmes posés par les variables instrumentales faibles dans la littérature économétrique, c’est-à-dire les situations où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter. En effet, il est bien connu que lorsque les instruments sont faibles, les distributions des statistiques de Student, de Wald, du ratio de vraisemblance et du multiplicateur de Lagrange ne sont plus standard et dépendent souvent de paramètres de nuisance. Plusieurs études empiriques portant notamment sur les modèles de rendements à l’éducation [Angrist et Krueger (1991, 1995), Angrist et al. (1999), Bound et al. (1995), Dufour et Taamouti (2007)] et d’évaluation des actifs financiers (C-CAPM) [Hansen et Singleton (1982,1983), Stock et Wright (2000)], où les variables instrumentales sont faiblement corrélées avec la variable à instrumenter, ont montré que l’utilisation de ces statistiques conduit souvent à des résultats peu fiables. Un remède à ce problème est l’utilisation de tests robustes à l’identification [Anderson et Rubin (1949), Moreira (2002), Kleibergen (2003), Dufour et Taamouti (2007)]. Cependant, il n’existe aucune littérature économétrique sur la qualité des procédures robustes à l’identification lorsque les instruments disponibles sont endogènes ou à la fois endogènes et faibles. Cela soulève la question de savoir ce qui arrive aux procédures d’inférence robustes à l’identification lorsque certaines variables instrumentales supposées exogènes ne le sont pas effectivement. Plus précisément, qu’arrive-t-il si une variable instrumentale invalide est ajoutée à un ensemble d’instruments valides? Ces procédures se comportent-elles différemment? Et si l’endogénéité des variables instrumentales pose des difficultés majeures à l’inférence statistique, peut-on proposer des procédures de tests qui sélectionnent les instruments lorsqu’ils sont à la fois forts et valides? Est-il possible de proposer les proédures de sélection d’instruments qui demeurent valides même en présence d’identification faible? Cette thèse se focalise sur les modèles structurels (modèles à équations simultanées) et apporte des réponses à ces questions à travers quatre essais. Le premier essai est publié dans Journal of Statistical Planning and Inference 138 (2008) 2649 – 2661. Dans cet essai, nous analysons les effets de l’endogénéité des instruments sur deux statistiques de test robustes à l’identification: la statistique d’Anderson et Rubin (AR, 1949) et la statistique de Kleibergen (K, 2003), avec ou sans instruments faibles. D’abord, lorsque le paramètre qui contrôle l’endogénéité des instruments est fixe (ne dépend pas de la taille de l’échantillon), nous montrons que toutes ces procédures sont en général convergentes contre la présence d’instruments invalides (c’est-à-dire détectent la présence d’instruments invalides) indépendamment de leur qualité (forts ou faibles). Nous décrivons aussi des cas où cette convergence peut ne pas tenir, mais la distribution asymptotique est modifiée d’une manière qui pourrait conduire à des distorsions de niveau même pour de grands échantillons. Ceci inclut, en particulier, les cas où l’estimateur des double moindres carrés demeure convergent, mais les tests sont asymptotiquement invalides. Ensuite, lorsque les instruments sont localement exogènes (c’est-à-dire le paramètre d’endogénéité converge vers zéro lorsque la taille de l’échantillon augmente), nous montrons que ces tests convergent vers des distributions chi-carré non centrées, que les instruments soient forts ou faibles. Nous caractérisons aussi les situations où le paramètre de non centralité est nul et la distribution asymptotique des statistiques demeure la même que dans le cas des instruments valides (malgré la présence des instruments invalides). Le deuxième essai étudie l’impact des instruments faibles sur les tests de spécification du type Durbin-Wu-Hausman (DWH) ainsi que le test de Revankar et Hartley (1973). Nous proposons une analyse en petit et grand échantillon de la distribution de ces tests sous l’hypothèse nulle (niveau) et l’alternative (puissance), incluant les cas où l’identification est déficiente ou faible (instruments faibles). Notre analyse en petit échantillon founit plusieurs perspectives ainsi que des extensions des précédentes procédures. En effet, la caractérisation de la distribution de ces statistiques en petit échantillon permet la construction des tests de Monte Carlo exacts pour l’exogénéité même avec les erreurs non Gaussiens. Nous montrons que ces tests sont typiquement robustes aux intruments faibles (le niveau est contrôlé). De plus, nous fournissons une caractérisation de la puissance des tests, qui exhibe clairement les facteurs qui déterminent la puissance. Nous montrons que les tests n’ont pas de puissance lorsque tous les instruments sont faibles [similaire à Guggenberger(2008)]. Cependant, la puissance existe tant qu’au moins un seul instruments est fort. La conclusion de Guggenberger (2008) concerne le cas où tous les instruments sont faibles (un cas d’intérêt mineur en pratique). Notre théorie asymptotique sous les hypothèses affaiblies confirme la théorie en échantillon fini. Par ailleurs, nous présentons une analyse de Monte Carlo indiquant que: (1) l’estimateur des moindres carrés ordinaires est plus efficace que celui des doubles moindres carrés lorsque les instruments sont faibles et l’endogenéité modérée [conclusion similaire à celle de Kiviet and Niemczyk (2007)]; (2) les estimateurs pré-test basés sur les tests d’exogenété ont une excellente performance par rapport aux doubles moindres carrés. Ceci suggère que la méthode des variables instrumentales ne devrait être appliquée que si l’on a la certitude d’avoir des instruments forts. Donc, les conclusions de Guggenberger (2008) sont mitigées et pourraient être trompeuses. Nous illustrons nos résultats théoriques à travers des expériences de simulation et deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le problème bien connu du rendement à l’éducation. Le troisième essai étend le test d’exogénéité du type Wald proposé par Dufour (1987) aux cas où les erreurs de la régression ont une distribution non-normale. Nous proposons une nouvelle version du précédent test qui est valide même en présence d’erreurs non-Gaussiens. Contrairement aux procédures de test d’exogénéité usuelles (tests de Durbin-Wu-Hausman et de Rvankar- Hartley), le test de Wald permet de résoudre un problème courant dans les travaux empiriques qui consiste à tester l’exogénéité partielle d’un sous ensemble de variables. Nous proposons deux nouveaux estimateurs pré-test basés sur le test de Wald qui performent mieux (en terme d’erreur quadratique moyenne) que l’estimateur IV usuel lorsque les variables instrumentales sont faibles et l’endogénéité modérée. Nous montrons également que ce test peut servir de procédure de sélection de variables instrumentales. Nous illustrons les résultats théoriques par deux applications empiriques: le modèle bien connu d’équation du salaire [Angist et Krueger (1991, 1999)] et les rendements d’échelle [Nerlove (1963)]. Nos résultats suggèrent que l’éducation de la mère expliquerait le décrochage de son fils, que l’output est une variable endogène dans l’estimation du coût de la firme et que le prix du fuel en est un instrument valide pour l’output. Le quatrième essai résout deux problèmes très importants dans la littérature économétrique. D’abord, bien que le test de Wald initial ou étendu permette de construire les régions de confiance et de tester les restrictions linéaires sur les covariances, il suppose que les paramètres du modèle sont identifiés. Lorsque l’identification est faible (instruments faiblement corrélés avec la variable à instrumenter), ce test n’est en général plus valide. Cet essai développe une procédure d’inférence robuste à l’identification (instruments faibles) qui permet de construire des régions de confiance pour la matrices de covariances entre les erreurs de la régression et les variables explicatives (possiblement endogènes). Nous fournissons les expressions analytiques des régions de confiance et caractérisons les conditions nécessaires et suffisantes sous lesquelles ils sont bornés. La procédure proposée demeure valide même pour de petits échantillons et elle est aussi asymptotiquement robuste à l’hétéroscédasticité et l’autocorrélation des erreurs. Ensuite, les résultats sont utilisés pour développer les tests d’exogénéité partielle robustes à l’identification. Les simulations Monte Carlo indiquent que ces tests contrôlent le niveau et ont de la puissance même si les instruments sont faibles. Ceci nous permet de proposer une procédure valide de sélection de variables instrumentales même s’il y a un problème d’identification. La procédure de sélection des instruments est basée sur deux nouveaux estimateurs pré-test qui combinent l’estimateur IV usuel et les estimateurs IV partiels. Nos simulations montrent que: (1) tout comme l’estimateur des moindres carrés ordinaires, les estimateurs IV partiels sont plus efficaces que l’estimateur IV usuel lorsque les instruments sont faibles et l’endogénéité modérée; (2) les estimateurs pré-test ont globalement une excellente performance comparés à l’estimateur IV usuel. Nous illustrons nos résultats théoriques par deux applications empiriques: la relation entre le taux d’ouverture et la croissance économique et le modèle de rendements à l’éducation. Dans la première application, les études antérieures ont conclu que les instruments n’étaient pas trop faibles [Dufour et Taamouti (2007)] alors qu’ils le sont fortement dans la seconde [Bound (1995), Doko et Dufour (2009)]. Conformément à nos résultats théoriques, nous trouvons les régions de confiance non bornées pour la covariance dans le cas où les instruments sont assez faibles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social interactions arguably provide a rationale for several important phenomena, from smoking and other risky behavior in teens to e.g., peer effects in school performance. We study social interactions in dynamic economies. For these economies, we provide existence (Markov Perfect Equilibrium in pure strategies), ergodicity, and welfare results. Also, we characterize equilibria in terms of agents' policy function, spatial equilibrium correlations and social multiplier effects, depending on the nature of interactions. Most importantly, we study formally the issue of the identification of social interactions, with special emphasis on the restrictions imposed by dynamic equilibrium conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette étude aborde le thème de l’utilisation des modèles de mélange de lois pour analyser des données de comportements et d’habiletés cognitives mesurées à plusieurs moments au cours du développement des enfants. L’estimation des mélanges de lois multinormales en utilisant l’algorithme EM est expliquée en détail. Cet algorithme simplifie beaucoup les calculs, car il permet d’estimer les paramètres de chaque groupe séparément, permettant ainsi de modéliser plus facilement la covariance des observations à travers le temps. Ce dernier point est souvent mis de côté dans les analyses de mélanges. Cette étude porte sur les conséquences d’une mauvaise spécification de la covariance sur l’estimation du nombre de groupes formant un mélange. La conséquence principale est la surestimation du nombre de groupes, c’est-à-dire qu’on estime des groupes qui n’existent pas. En particulier, l’hypothèse d’indépendance des observations à travers le temps lorsque ces dernières étaient corrélées résultait en l’estimation de plusieurs groupes qui n’existaient pas. Cette surestimation du nombre de groupes entraîne aussi une surparamétrisation, c’est-à-dire qu’on utilise plus de paramètres qu’il n’est nécessaire pour modéliser les données. Finalement, des modèles de mélanges ont été estimés sur des données de comportements et d’habiletés cognitives. Nous avons estimé les mélanges en supposant d’abord une structure de covariance puis l’indépendance. On se rend compte que dans la plupart des cas l’ajout d’une structure de covariance a pour conséquence d’estimer moins de groupes et les résultats sont plus simples et plus clairs à interpréter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.