28 resultados para Finite-strain Consolidation
em Université de Montréal, Canada
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
We propose an alternate parameterization of stationary regular finite-state Markov chains, and a decomposition of the parameter into time reversible and time irreversible parts. We demonstrate some useful properties of the decomposition, and propose an index for a certain type of time irreversibility. Two empirical examples illustrate the use of the proposed parameter, decomposition and index. One involves observed states; the other, latent states.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Le contexte contemporain est marqué dans la sphère politique par la multiplication des paliers de régulation. Une nouvelle structure de gestion des affaires publiques a émergé, caractérisée par la superposition, ou plutôt l’enchevêtrement, des institutions nationales, des entités infra-étatiques et des organisations supranationales (à caractère régional et international). L’État, tout en conservant un rôle privilégié, ne détient plus le monopole de la production de politiques ; la sphère nationale n’est plus le seul locus de la vie politique. De telles dynamiques de changement n’ont pas laissé inchangés les contours de la citoyenneté, élément central de la régulation du politique. Les années 90 ont ainsi vu émerger une prolifération d’analyses concernant la dimension de plus en plus post/trans/supra-nationale, voire globale, de la citoyenneté ; selon ces travaux, le locus de la citoyenneté est de moins en moins national et de plus en plus supranational. La thèse cherche à dépasser cette problématique du locus à partir d’une conception multiple et dynamique de la citoyenneté ; celle-ci est considérée comme une construction dont les contours mouvants évoluent dans le temps et l’espace. Les individus ne sont pas citoyens « par nature » ; ils le deviennent à travers un processus de « citoyennisation », au fur et à mesure que des entités politiques se constituent et se consolident. Les structures institutionnelles et les politiques publiques progressivement mises en place au sein des entités politiques supranationales créent des liens de citoyenneté avec les individus, et la nature de ces liens se transforme au fur et à mesure que les structures institutionnelles et politiques changent. C’est une analyse contextualisée de ces processus de « citoyennisation » en cours au niveau supranational que propose la thèse. Dans cette perspective, elle s’interroge sur la signification des développements récents qui ont marqué l’Union européenne et l’Organisation des Nations Unies pour la construction d’une citoyenneté supranationale. Piliers importants de la structure de régulation multi-niveaux caractérisant la sphère politique contemporaine, ces deux entités se sont ces dernières années engagées dans un processus de réformes institutionnelles profondes. En s’appuyant notamment sur les concepts de « régime de citoyenneté » et de « gouvernance » et un cadre théorique institutionnaliste, la thèse propose une analyse de l’impact des changements institutionnels en cours au sein des Nations Unies et de l’Union européenne en termes de citoyennisation.
Resumo:
Ce mémoire présente l’évaluation du remodelage osseux autour des composantes acétabulaires non cimentées press-fit d’une arthroplastie de resurfaçage (RH) et d’une prothèse totale de hanche (PTH) après un minimum de 21 mois d’implantation. Nous avons mesuré par l’absorptiométrie à rayons X en double énergie (DEXA) la densité minérale osseuse (DMO) supra acétabulaire chez 60 patients (44 RH, 16 PTH). Aucune différence significative de la moyenne des DMO au niveau de la zone globale et de la zone centrale de l’acétabulum n’a été trouvée entre la hanche opérée et la hanche controlatérale, dans les deux groupes de traitement. Cependant, la DMO des zones corticospongieuses médiale et latérale est plus élevée du côté opéré par rapport au côté non opéré avec la cupule en chrome cobalt de la RH; (p=0,014 et 0,031 respectivement). Alors que pour la PTH avec une cupule en titane, la différence de la DMO au niveau de ces zones n’est pas significative; (p=0,130 et 0,733). Ces données semblent démontrer qu’avec des cupules plus rigides, il y a transfert des contraintes de charges vers la périphérie corticale. C’est la première étude à évaluer le remodelage osseux péri acétabulaire avec un RH. Cela montre que la DMO est relativement préservée et que le transfert des contraintes vers la périphérie peut être favorable au maintien de la stabilité de l’implant primaire et aux éventuelles révisions de la cupule press-fit du RH.