10 resultados para Finite model searching
em Université de Montréal, Canada
Resumo:
Cette thèse en électronique moléculaire porte essentiellement sur le développement d’une méthode pour le calcul de la transmission de dispositifs électroniques moléculaires (DEMs), c’est-à-dire des molécules branchées à des contacts qui forment un dispositif électronique de taille moléculaire. D’une part, la méthode développée vise à apporter un point de vue différent de celui provenant des méthodes déjà existantes pour ce type de calculs. D’autre part, elle permet d’intégrer de manière rigoureuse des outils théoriques déjà développés dans le but d’augmenter la qualité des calculs. Les exemples simples présentés dans ce travail permettent de mettre en lumière certains phénomènes, tel que l’interférence destructive dans les dispositifs électroniques moléculaires. Les chapitres proviennent d’articles publiés dans la littérature. Au chapitre 2, nous étudions à l’aide d’un modèle fini avec la méthode de la théorie de la fonctionnelle de la densité de Kohn-Sham un point quantique moléculaire. De plus, nous calculons la conductance du point quantique moléculaire avec une implémentation de la formule de Landauer. Nous trouvons que la structure électronique et la conductance moléculaire dépendent fortement de la fonctionnelle d’échange et de corrélation employée. Au chapitre 3, nous discutons de l’effet de l’ajout d’une chaîne ramifiée à des molécules conductrices sur la probabilité de transmission de dispositifs électroniques moléculaires. Nous trouvons que des interférences destructives apparaissent aux valeurs propres de l’énergie des chaînes ramifiées isolées, si ces valeurs ne correspondent pas à des états localisés éloignés du conducteur moléculaire. Au chapitre 4, nous montrons que les dispositifs électroniques moléculaires contenant une molécule aromatique présentent généralement des courants circulaires qui sont associés aux phénomènes d’interférence destructive dans ces systèmes. Au chapitre 5, nous employons l’approche « source-sink potential » (SSP) pour étudier la transmission de dispositifs électroniques moléculaires. Au lieu de considérer les potentiels de sources et de drains exactement, nous utilisons la théorie des perturbations pour trouver une expression de la probabilité de transmission, T(E) = 1 − |r(E)|2, où r(E) est le coefficient de réflexion qui dépend de l’énergie. Cette expression dépend des propriétés de la molécule isolée, en effet nous montrons que c’est la densité orbitalaire sur les atomes de la molécule qui sont connectés aux contacts qui détermine principalement la transmission du dispositif à une énergie de l’électron incident donnée. Au chapitre 6, nous présentons une extension de l’approche SSP à un canal pour des dispositifs électroniques moléculaires à plusieurs canaux. La méthode à multiples canaux proposée repose sur une description des canaux propres des états conducteurs du dispositif électronique moléculaire (DEM) qui sont obtenus par un algorithme auto-cohérent. Finalement, nous utilisons le modèle développé afin d’étudier la transmission du 1-phényl-1,3-butadiène branché à deux rangées d’atomes couplées agissant comme contacts à gauche et à la droite.
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.
Resumo:
This paper considers various asymptotic approximations in the near-integrated firstorder autoregressive model with a non-zero initial condition. We first extend the work of Knight and Satchell (1993), who considered the random walk case with a zero initial condition, to derive the expansion of the relevant joint moment generating function in this more general framework. We also consider, as alternative approximations, the stochastic expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We assess how these alternative methods provide or not an adequate approximation to the finite-sample distribution of the least-squares estimator in a first-order autoregressive model. The results show that, when the initial condition is non-zero, Perron's (1991) continuous time approximation performs very well while the others only offer improvements when the initial condition is zero.
Resumo:
In this paper, we propose several finite-sample specification tests for multivariate linear regressions (MLR) with applications to asset pricing models. We focus on departures from the assumption of i.i.d. errors assumption, at univariate and multivariate levels, with Gaussian and non-Gaussian (including Student t) errors. The univariate tests studied extend existing exact procedures by allowing for unspecified parameters in the error distributions (e.g., the degrees of freedom in the case of the Student t distribution). The multivariate tests are based on properly standardized multivariate residuals to ensure invariance to MLR coefficients and error covariances. We consider tests for serial correlation, tests for multivariate GARCH and sign-type tests against general dependencies and asymmetries. The procedures proposed provide exact versions of those applied in Shanken (1990) which consist in combining univariate specification tests. Specifically, we combine tests across equations using the MC test procedure to avoid Bonferroni-type bounds. Since non-Gaussian based tests are not pivotal, we apply the “maximized MC” (MMC) test method [Dufour (2002)], where the MC p-value for the tested hypothesis (which depends on nuisance parameters) is maximized (with respect to these nuisance parameters) to control the test’s significance level. The tests proposed are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995. Our empirical results reveal the following. Whereas univariate exact tests indicate significant serial correlation, asymmetries and GARCH in some equations, such effects are much less prevalent once error cross-equation covariances are accounted for. In addition, significant departures from the i.i.d. hypothesis are less evident once we allow for non-Gaussian errors.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Affiliation: Institut de recherche en immunologie et en cancérologie, Université de Montréal
Resumo:
We study the workings of the factor analysis of high-dimensional data using artificial series generated from a large, multi-sector dynamic stochastic general equilibrium (DSGE) model. The objective is to use the DSGE model as a laboratory that allow us to shed some light on the practical benefits and limitations of using factor analysis techniques on economic data. We explain in what sense the artificial data can be thought of having a factor structure, study the theoretical and finite sample properties of the principal components estimates of the factor space, investigate the substantive reason(s) for the good performance of di¤usion index forecasts, and assess the quality of the factor analysis of highly dissagregated data. In all our exercises, we explain the precise relationship between the factors and the basic macroeconomic shocks postulated by the model.