5 resultados para Finite difference simulations

em Université de Montréal, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle avec l'Université Catholique de Louvain (Belgique)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La fibrillation auriculaire (FA) est la forme d’arythmie la plus fréquente et représente environ un tiers des hospitalisations attribuables aux troubles du rythme cardiaque. Les mécanismes d’initiation et de maintenance de la FA sont complexes et multiples. Parmi ceux-ci, une contribution du système nerveux autonome a été identifiée mais son rôle exact demeure mal compris. Ce travail cible l’étude de la modulation induite par l’acétylcholine (ACh) sur l’initiation et le maintien de la FA, en utilisant un modèle de tissu bidimensionnel. La propagation de l’influx électrique sur ce tissu est décrite par une équation réaction-diffusion non-linéaire résolue sur un maillage rectangulaire avec une méthode de différences finies, et la cinétique d'ACh suit une évolution temporelle prédéfinie qui correspond à l’activation du système parasympathique. Plus de 4400 simulations ont été réalisées sur la base de 4 épisodes d’arythmies, 5 tailles différentes de région modulée par l’ACh, 10 concentrations d’ACh et 22 constantes de temps de libération et de dégradation d’ACh. La complexité de la dynamique des réentrées est décrite en fonction de la constante de temps qui représente le taux de variation d’ACh. Les résultats obtenus suggèrent que la stimulation vagale peut mener soit à une dynamique plus complexe des réentrées soit à l’arrêt de la FA en fonction des quatre paramètres étudiés. Ils démontrent qu’une décharge vagale rapide, représentée par des constantes de temps faibles combinées à une quantité suffisamment grande d’ACh, a une forte probabilité de briser la réentrée primaire provoquant une activité fibrillatoire. Cette activité est caractérisée par la création de plusieurs ondelettes à partir d’un rotor primaire sous l’effet de l’hétérogénéité du gradient de repolarisation causé par l’activité autonomique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La méthode IIM (Immersed Interface Method) permet d'étendre certaines méthodes numériques à des problèmes présentant des discontinuités. Elle est utilisée ici pour étudier un fluide incompressible régi par les équations de Navier-Stokes, dans lequel est immergée une membrane exerçant une force singulière. Nous utilisons une méthode de projection dans une grille de différences finies de type MAC. Une dérivation très complète des conditions de saut dans le cas où la viscosité est continue est présentée en annexe. Deux exemples numériques sont présentés : l'un sans membrane, et l'un où la membrane est immobile. Le cas général d'une membrane mobile est aussi étudié en profondeur.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Un modèle mathématique de la propagation de la malaria en temps discret est élaboré en vue de déterminer l'influence qu'un déplacement des populations des zones rurales vers les zones urbaines aurait sur la persistance ou la diminution de l'incidence de la malaria. Ce modèle, sous la forme d'un système de quatorze équations aux différences finies, est ensuite comparé à un modèle analogue mais en temps continu, qui prend la forme d'équations différentielles ordinaires. Une étude comparative avec la littérature récente permet de déterminer les forces et les faiblesses de notre modèle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Un algorithme permettant de discrétiser les équations aux dérivées partielles (EDP) tout en préservant leurs symétries de Lie est élaboré. Ceci est rendu possible grâce à l'utilisation de dérivées partielles discrètes se transformant comme les dérivées partielles continues sous l'action de groupes de Lie locaux. Dans les applications, beaucoup d'EDP sont invariantes sous l'action de transformations ponctuelles de Lie de dimension infinie qui font partie de ce que l'on désigne comme des pseudo-groupes de Lie. Afin d'étendre la méthode de discrétisation préservant les symétries à ces équations, une discrétisation des pseudo-groupes est proposée. Cette discrétisation a pour effet de transformer les symétries ponctuelles en symétries généralisées dans l'espace discret. Des schémas invariants sont ensuite créés pour un certain nombre d'EDP. Dans tous les cas, des tests numériques montrent que les schémas invariants approximent mieux leur équivalent continu que les différences finies standard.