10 resultados para FPGA parallel SAT solver
em Université de Montréal, Canada
Resumo:
Quoique très difficile à résoudre, le problème de satisfiabilité Booléenne (SAT) est fréquemment utilisé lors de la modélisation d’applications industrielles. À cet effet, les deux dernières décennies ont vu une progression fulgurante des outils conçus pour trouver des solutions à ce problème NP-complet. Deux grandes avenues générales ont été explorées afin de produire ces outils, notamment l’approche logicielle et matérielle. Afin de raffiner et améliorer ces solveurs, de nombreuses techniques et heuristiques ont été proposées par la communauté de recherche. Le but final de ces outils a été de résoudre des problèmes de taille industrielle, ce qui a été plus ou moins accompli par les solveurs de nature logicielle. Initialement, le but de l’utilisation du matériel reconfigurable a été de produire des solveurs pouvant trouver des solutions plus rapidement que leurs homologues logiciels. Cependant, le niveau de sophistication de ces derniers a augmenté de telle manière qu’ils restent le meilleur choix pour résoudre SAT. Toutefois, les solveurs modernes logiciels n’arrivent toujours pas a trouver des solutions de manière efficace à certaines instances SAT. Le but principal de ce mémoire est d’explorer la résolution du problème SAT dans le contexte du matériel reconfigurable en vue de caractériser les ingrédients nécessaires d’un solveur SAT efficace qui puise sa puissance de calcul dans le parallélisme conféré par une plateforme FPGA. Le prototype parallèle implémenté dans ce travail est capable de se mesurer, en termes de vitesse d’exécution à d’autres solveurs (matériels et logiciels), et ce sans utiliser aucune heuristique. Nous montrons donc que notre approche matérielle présente une option prometteuse vers la résolution d’instances industrielles larges qui sont difficilement abordées par une approche logicielle.
Resumo:
Dans l'apprentissage machine, la classification est le processus d’assigner une nouvelle observation à une certaine catégorie. Les classifieurs qui mettent en œuvre des algorithmes de classification ont été largement étudié au cours des dernières décennies. Les classifieurs traditionnels sont basés sur des algorithmes tels que le SVM et les réseaux de neurones, et sont généralement exécutés par des logiciels sur CPUs qui fait que le système souffre d’un manque de performance et d’une forte consommation d'énergie. Bien que les GPUs puissent être utilisés pour accélérer le calcul de certains classifieurs, leur grande consommation de puissance empêche la technologie d'être mise en œuvre sur des appareils portables tels que les systèmes embarqués. Pour rendre le système de classification plus léger, les classifieurs devraient être capable de fonctionner sur un système matériel plus compact au lieu d'un groupe de CPUs ou GPUs, et les classifieurs eux-mêmes devraient être optimisés pour ce matériel. Dans ce mémoire, nous explorons la mise en œuvre d'un classifieur novateur sur une plate-forme matérielle à base de FPGA. Le classifieur, conçu par Alain Tapp (Université de Montréal), est basé sur une grande quantité de tables de recherche qui forment des circuits arborescents qui effectuent les tâches de classification. Le FPGA semble être un élément fait sur mesure pour mettre en œuvre ce classifieur avec ses riches ressources de tables de recherche et l'architecture à parallélisme élevé. Notre travail montre que les FPGAs peuvent implémenter plusieurs classifieurs et faire les classification sur des images haute définition à une vitesse très élevée.
Resumo:
This paper examines the use of bundling by a firm that sells in two national markets and faces entry by parallel traders. The firm can bundle its main product, - a tradable good- with a non-traded service. It chooses between the strategies of pure bundling, mixed bundling and no bundling. The paper shows that in the low-price country the threat of grey trade elicits a move from mixed bundling, or no bundling, towards pure bundling. It encourages a move from pure bundling towards mixes bundling or no bundling in the high-price country. The set of parameter values for which the profit maximizing strategy is not to supply the low price country is smaller than in the absence of bundling. The welfare effects of deterrence of grey trade are not those found in conventional models of price arbitrage. Some consumers in the low-price country may gain from the threat of entry by parallel traders although they pay a higher price. This is due to the fact that the firm responds to the threat of arbitrageurs by increasing the amount of services it puts in the bundle targeted at consumers in that country. Similarly, the threat of parallel trade may affect some consumers in the hight-price country adversely.
Resumo:
Depuis l’introduction de la mécanique quantique, plusieurs mystères de la nature ont trouvé leurs explications. De plus en plus, les concepts de la mécanique quantique se sont entremêlés avec d’autres de la théorie de la complexité du calcul. De nouvelles idées et solutions ont été découvertes et élaborées dans le but de résoudre ces problèmes informatiques. En particulier, la mécanique quantique a secoué plusieurs preuves de sécurité de protocoles classiques. Dans ce m´emoire, nous faisons un étalage de résultats récents de l’implication de la mécanique quantique sur la complexité du calcul, et cela plus précisément dans le cas de classes avec interaction. Nous présentons ces travaux de recherches avec la nomenclature des jeux à information imparfaite avec coopération. Nous exposons les différences entre les théories classiques, quantiques et non-signalantes et les démontrons par l’exemple du jeu à cycle impair. Nous centralisons notre attention autour de deux grands thèmes : l’effet sur un jeu de l’ajout de joueurs et de la répétition parallèle. Nous observons que l’effet de ces modifications a des conséquences très différentes en fonction de la théorie physique considérée.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
L’apprentissage supervisé de réseaux hiérarchiques à grande échelle connaît présentement un succès fulgurant. Malgré cette effervescence, l’apprentissage non-supervisé représente toujours, selon plusieurs chercheurs, un élément clé de l’Intelligence Artificielle, où les agents doivent apprendre à partir d’un nombre potentiellement limité de données. Cette thèse s’inscrit dans cette pensée et aborde divers sujets de recherche liés au problème d’estimation de densité par l’entremise des machines de Boltzmann (BM), modèles graphiques probabilistes au coeur de l’apprentissage profond. Nos contributions touchent les domaines de l’échantillonnage, l’estimation de fonctions de partition, l’optimisation ainsi que l’apprentissage de représentations invariantes. Cette thèse débute par l’exposition d’un nouvel algorithme d'échantillonnage adaptatif, qui ajuste (de fa ̧con automatique) la température des chaînes de Markov sous simulation, afin de maintenir une vitesse de convergence élevée tout au long de l’apprentissage. Lorsqu’utilisé dans le contexte de l’apprentissage par maximum de vraisemblance stochastique (SML), notre algorithme engendre une robustesse accrue face à la sélection du taux d’apprentissage, ainsi qu’une meilleure vitesse de convergence. Nos résultats sont présent ́es dans le domaine des BMs, mais la méthode est générale et applicable à l’apprentissage de tout modèle probabiliste exploitant l’échantillonnage par chaînes de Markov. Tandis que le gradient du maximum de vraisemblance peut-être approximé par échantillonnage, l’évaluation de la log-vraisemblance nécessite un estimé de la fonction de partition. Contrairement aux approches traditionnelles qui considèrent un modèle donné comme une boîte noire, nous proposons plutôt d’exploiter la dynamique de l’apprentissage en estimant les changements successifs de log-partition encourus à chaque mise à jour des paramètres. Le problème d’estimation est reformulé comme un problème d’inférence similaire au filtre de Kalman, mais sur un graphe bi-dimensionnel, où les dimensions correspondent aux axes du temps et au paramètre de température. Sur le thème de l’optimisation, nous présentons également un algorithme permettant d’appliquer, de manière efficace, le gradient naturel à des machines de Boltzmann comportant des milliers d’unités. Jusqu’à présent, son adoption était limitée par son haut coût computationel ainsi que sa demande en mémoire. Notre algorithme, Metric-Free Natural Gradient (MFNG), permet d’éviter le calcul explicite de la matrice d’information de Fisher (et son inverse) en exploitant un solveur linéaire combiné à un produit matrice-vecteur efficace. L’algorithme est prometteur: en terme du nombre d’évaluations de fonctions, MFNG converge plus rapidement que SML. Son implémentation demeure malheureusement inefficace en temps de calcul. Ces travaux explorent également les mécanismes sous-jacents à l’apprentissage de représentations invariantes. À cette fin, nous utilisons la famille de machines de Boltzmann restreintes “spike & slab” (ssRBM), que nous modifions afin de pouvoir modéliser des distributions binaires et parcimonieuses. Les variables latentes binaires de la ssRBM peuvent être rendues invariantes à un sous-espace vectoriel, en associant à chacune d’elles, un vecteur de variables latentes continues (dénommées “slabs”). Ceci se traduit par une invariance accrue au niveau de la représentation et un meilleur taux de classification lorsque peu de données étiquetées sont disponibles. Nous terminons cette thèse sur un sujet ambitieux: l’apprentissage de représentations pouvant séparer les facteurs de variations présents dans le signal d’entrée. Nous proposons une solution à base de ssRBM bilinéaire (avec deux groupes de facteurs latents) et formulons le problème comme l’un de “pooling” dans des sous-espaces vectoriels complémentaires.
Resumo:
Paralogs are present during ribosome biogenesis as well as in mature ribosomes in form of ribosomal proteins, and are commonly believed to play redundant functions within the cell. Two previously identified paralogs are the protein pair Ssf1 and Ssf2 (94% homologous). Ssf2 is believed to replace Ssf1 in case of its absence from cells, and depletion of both proteins leads to severely impaired cell growth. Results reveal that, under normal conditions, the Ssf paralogs associate with similar sets of proteins but with varying stabilities. Moreover, disruption of their pre-rRNP particles using high stringency buffers revealed that at least three proteins, possibly Dbp9, Drs1 and Nog1, are strongly associated with each Ssf protein under these conditions, and most likely represent a distinct subcomplex. In this study, depletion phenotypes obtained upon altering Nop7, Ssf1 and/or Ssf2 protein levels revealed that the Ssf paralogs cannot fully compensate for the depletion of one another because they are both, independently, required along parallel pathways that are dependent on the levels of availability of specific ribosome biogenesis proteins. Finally, this work provides evidence that, in yeast, Nop7 is genetically linked with both Ssf proteins.