20 resultados para EMPIRICAL DISTRIBUTION FUNCTION
em Université de Montréal, Canada
Resumo:
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques.
Resumo:
Ce mémoire porte sur la simulation d'intervalles de crédibilité simultanés dans un contexte bayésien. Dans un premier temps, nous nous intéresserons à des données de précipitations et des fonctions basées sur ces données : la fonction de répartition empirique et la période de retour, une fonction non linéaire de la fonction de répartition. Nous exposerons différentes méthodes déjà connues pour obtenir des intervalles de confiance simultanés sur ces fonctions à l'aide d'une base polynomiale et nous présenterons une méthode de simulation d'intervalles de crédibilité simultanés. Nous nous placerons ensuite dans un contexte bayésien en explorant différents modèles de densité a priori. Pour le modèle le plus complexe, nous aurons besoin d'utiliser la simulation Monte-Carlo pour obtenir les intervalles de crédibilité simultanés a posteriori. Finalement, nous utiliserons une base non linéaire faisant appel à la transformation angulaire et aux splines monotones pour obtenir un intervalle de crédibilité simultané valide pour la période de retour.
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
This paper considers various asymptotic approximations in the near-integrated firstorder autoregressive model with a non-zero initial condition. We first extend the work of Knight and Satchell (1993), who considered the random walk case with a zero initial condition, to derive the expansion of the relevant joint moment generating function in this more general framework. We also consider, as alternative approximations, the stochastic expansion of Phillips (1987c) and the continuous time approximation of Perron (1991). We assess how these alternative methods provide or not an adequate approximation to the finite-sample distribution of the least-squares estimator in a first-order autoregressive model. The results show that, when the initial condition is non-zero, Perron's (1991) continuous time approximation performs very well while the others only offer improvements when the initial condition is zero.
Resumo:
This note investigates the adequacy of the finite-sample approximation provided by the Functional Central Limit Theorem (FCLT) when the errors are allowed to be dependent. We compare the distribution of the scaled partial sums of some data with the distribution of the Wiener process to which it converges. Our setup is purposely very simple in that it considers data generated from an ARMA(1,1) process. Yet, this is sufficient to bring out interesting conclusions about the particular elements which cause the approximations to be inadequate in even quite large sample sizes.
Resumo:
L’objectif de ce mémoire de maîtrise est de développer et de caractériser diverses sources de neutres réactifs destinées à des études fondamentales des interactions plasmas-surfaces. Ce projet s’inscrit dans le cadre d’une vaste étude de la physique des interactions plasmas-parois mises en jeu dans les procédés de gravure par plasma des matériaux de pointe. Une revue de la littérature scientifique sur les diverses méthodes permettant de générer des faisceaux de neutres réactifs nous a permis de sélectionner deux types de sources. La première, une source pyrolitique, a été caractérisée par spectrométrie de masse en utilisant le C2F6 comme molécule mère. Nous avons montré que le C2F6 était dissocié à plus de 90% à 1000ºC et qu’il formait du CF4, lui-même dissocié en CF2 vers 900ºC. Ces résultats ont été validés à l’aide d’un modèle basé sur des calculs d’équilibres chimiques, qui a aussi prédit la formation de F à 1500ºC. La seconde source, un plasma entretenu par une onde électromagnétique de surfaces, a été caractérisée par spectroscopie optique d’émission et par interférométrie haute fréquence. Dans le cas du plasma d’argon créé par un champ électromagnétique (>GHz), nos travaux ont révélé une distribution en énergie des électrons à trois températures avec Te-low>Te-high
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.
Resumo:
Malgré une vaste littérature concernant les propriétés structurelles, électroniques et ther- modynamiques du silicium amorphe (a-Si), la structure microscopique de ce semi-cond- ucteur covalent échappe jusqu’à ce jour à une description exacte. Plusieurs questions demeurent en suspens, concernant par exemple la façon dont le désordre est distribué à travers la matrice amorphe : uniformément ou au sein de petites régions hautement déformées ? D’autre part, comment ce matériau relaxe-t-il : par des changements homo- gènes augmentant l’ordre à moyenne portée, par l’annihilation de défauts ponctuels ou par une combinaison de ces phénomènes ? Le premier article présenté dans ce mémoire propose une caractérisation des défauts de coordination, en terme de leur arrangement spatial et de leurs énergies de formation. De plus, les corrélations spatiales entre les défauts structurels sont examinées en se ba- sant sur un paramètre qui quantifie la probabilité que deux sites défectueux partagent un lien. Les géométries typiques associées aux atomes sous et sur-coordonnés sont extraites du modèle et décrites en utilisant les distributions partielles d’angles tétraédriques. L’in- fluence de la relaxation induite par le recuit sur les défauts structurels est également analysée. Le second article porte un regard sur la relation entre l’ordre à moyenne portée et la relaxation thermique. De récentes mesures expérimentales montrent que le silicium amorphe préparé par bombardement ionique, lorsque soumis à un recuit, subit des chan- gements structuraux qui laissent une signature dans la fonction de distribution radiale, et cela jusqu’à des distances correspondant à la troisième couche de voisins.[1, 2] Il n’est pas clair si ces changements sont une répercussion d’une augmentation de l’ordre à courte portée, ou s’ils sont réellement la manifestation d’un ordonnement parmi les angles dièdres, et cette section s’appuie sur des simulations numériques d’implantation ionique et de recuit, afin de répondre à cette question. D’autre part, les corrélations entre les angles tétraédriques et dièdres sont analysées à partir du modèle de a-Si.
Resumo:
Le but de cette thèse était d’étudier la dynamique de croissance par pulvérisation par plasma RF magnétron des couches minces à base d’oxyde de zinc destinées à des applications électroniques, optoélectroniques et photoniques de pointe. Dans ce contexte, nous avons mis au point plusieurs diagnostics permettant de caractériser les espèces neutres et chargées dans ce type de plasmas, notamment la sonde électrostatique, la spectroscopie optique d’émission et d’absorption, ainsi que la spectrométrie de masse. Par la suite, nous avons tenté de corréler certaines caractéristiques physiques de croissance des couches de ZnO, en particulier la vitesse de dépôt, aux propriétés fondamentales du plasma. Nos résultats ont montré que l’éjection d’atomes de Zn, In et O au cours de la pulvérisation RF magnétron de cibles de Zn, ZnO et In2O3 n’influence que très peu la densité d’ions positifs (et donc la densité d’électrons en supposant la quasi-neutralité) ainsi que la fonction de distribution en énergie des électrons (populations de basse et haute énergie). Cependant, le rapport entre la densité d’atomes d’argon métastables (3P2) sur la densité électronique décroît lorsque la densité d’atomes de Zn augmente, un effet pouvant être attribué à l’ionisation des atomes de Zn par effet Penning. De plus, dans les conditions opératoires étudiées (plasmas de basse pression, < 100 mTorr), la thermalisation des atomes pulvérisés par collisions avec les atomes en phase gazeuse demeure incomplète. Nous avons montré que l’une des conséquences de ce résultat est la présence d’ions Zn+ suprathermiques près du substrat. Finalement, nous avons corrélé la quantité d’atomes de Zn pulvérisés déterminée par spectroscopie d’émission avec la vitesse de dépôt d’une couche mince de ZnO mesurée par ellipsométrie spectroscopique. Ces travaux ont permis de mettre en évidence que ce sont majoritairement les atomes de Zn (et non les espèces excitées et/ou ioniques) qui gouvernent la dynamique de croissance par pulvérisation RF magnétron des couches minces de ZnO.
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
Affiliation: Faculté de pharmacie, Université de Montréal
Resumo:
Affiliation: Pascal Michel : Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal
Resumo:
On présente une nouvelle approche de simulation pour la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine, pour des modèles de risque déterminés par des subordinateurs de Lévy. Cette approche s'inspire de la décomposition "Ladder height" pour la probabilité de ruine dans le Modèle Classique. Ce modèle, déterminé par un processus de Poisson composé, est un cas particulier du modèle plus général déterminé par un subordinateur, pour lequel la décomposition "Ladder height" de la probabilité de ruine s'applique aussi. La Fonction de Pénalité Escomptée, encore appelée Fonction Gerber-Shiu (Fonction GS), a apporté une approche unificatrice dans l'étude des quantités liées à l'événement de la ruine été introduite. La probabilité de ruine et la fonction de densité conjointe du surplus avant la ruine et du déficit au moment de la ruine sont des cas particuliers de la Fonction GS. On retrouve, dans la littérature, des expressions pour exprimer ces deux quantités, mais elles sont difficilement exploitables de par leurs formes de séries infinies de convolutions sans formes analytiques fermées. Cependant, puisqu'elles sont dérivées de la Fonction GS, les expressions pour les deux quantités partagent une certaine ressemblance qui nous permet de nous inspirer de la décomposition "Ladder height" de la probabilité de ruine pour dériver une approche de simulation pour cette fonction de densité conjointe. On présente une introduction détaillée des modèles de risque que nous étudions dans ce mémoire et pour lesquels il est possible de réaliser la simulation. Afin de motiver ce travail, on introduit brièvement le vaste domaine des mesures de risque, afin d'en calculer quelques unes pour ces modèles de risque. Ce travail contribue à une meilleure compréhension du comportement des modèles de risques déterminés par des subordinateurs face à l'éventualité de la ruine, puisqu'il apporte un point de vue numérique absent de la littérature.