3 resultados para ELECTRON-TRANSPORT

em Université de Montréal, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contrairement à la plupart des eucaryotes non-photosynthétiques, les végétaux doivent assurer la stabilité d’un génome additionnel contenu dans le plastide, un organite d’origine endosymbiotique. Malgré la taille modeste de ce génome et le faible nombre de gènes qu’il encode, celui-ci est absolument essentiel au processus de photosynthèse. Pourtant, même si ce génome est d’une importance cruciale pour le développement de la plante, les principales menaces à son intégrité, ainsi que les conséquences d’une déstabilisation généralisée de sa séquence d’ADN, demeurent largement inconnues. Dans l’objectif d’élucider les conséquences de l’instabilité génomique chloroplastique, nous avons utilisé le mutant why1why3polIb d’Arabidopsis thaliana, qui présente d’importants niveaux de réarrangements génomiques chloroplastiques, ainsi que la ciprofloxacine, un composé induisant des brisures double-brins dans l’ADN des organites. Ceci nous a permis d’établir qu’une quantité importante de réarrangements génomiques provoque une déstabilisation de la chaîne de transport des électrons photosynthétique et un grave stress oxydatif associé au processus de photosynthèse. Étonnamment, chez why1why3polIb, ces hautes concentrations d’espèces oxygénées réactives ne mènent ni à la perte de fonction des chloroplastes affectés, ni à la mort cellulaire des tissus. Bien au contraire, ce déséquilibre rédox semble être à l’origine d’une reprogrammation génique nucléaire permettant de faire face à ce stress photosynthétique et conférant une tolérance aux stress oxydatifs subséquents. Grâce à une nouvelle méthode d’analyse des données de séquençage de nouvelle génération, nous montrons également qu’un type particulier d’instabilité génomique, demeuré peu caractérisé jusqu’à maintenant, constitue une des principales menaces au maintien de l’intégrité génomique des organites, et ce, tant chez Arabidopsis que chez l’humain. Ce type d’instabilité génomique est dénommé réarrangement de type U-turn et est vraisemblablement associé au processus de réplication. Par une approche génétique, nous démontrons que les protéines chloroplastiques WHY1, WHY3 et RECA1 empêchent la formation de ce type d’instabilité génomique, probablement en favorisant la stabilisation et le redémarrage des fourches de réplication bloquées. Une forte accumulation de réarrangements de type U-turn semble d’ailleurs être à l’origine d’un sévère trouble développemental chez le mutant why1why3reca1. Ceci soulève de nombreuses questions quant à l’implication de ce type d’instabilité génomique dans de nombreux troubles et pathologies possédant une composante mitochondriale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La résistance bactérienne aux antibiotiques est de nos jours une préoccupation majeure aux acteurs du monde de la santé publique. L’identification de nouvelles cibles bactériennes en vue de développer de nouveaux antibiotiques est donc nécessaire. La paroi bactérienne est une bonne cible car l’inhibition de sa biosynthèse cause la mort des bactéries. De récents travaux de notre laboratoire ont identifié de nombreux nouveaux facteurs importants pour la biosynthèse de la paroi chez Escherichia coli. L’un de ces facteurs renommé ElyC a un domaine DUF218 extrêmement conservé à travers les espèces bactériennes. L’absence du gène elyC entraîne la lyse bactérienne à température pièce. Des études bioinformatiques indiquent qu’ElyC est une protéine membranaire avec deux domaines transmembranaires et un domaine conservé DUF218 de fonction inconnue. Étant donné que les protéines agissent souvent en complexes, nous avons émis l’hypothèse qu’ElyC interagit avec d’autres protéines afin d'exécuter sa fonction biologique. Le but de mon projet est de déterminer la topologie d’ElyC et d’identifier ses partenaires protéiques. L’étude de la topologie a été faite par l’essai de modification de cystéine sur des souches exprimant individuellement le facteur ElyC avec un résidu cystéine en position N-terminale, dans la boucle ou en position C-terminale. Les partenaires protéiques d’ElyC ont été isolés par immuno-précipitation et identifiés par spectrométrie de masse. Les résultats obtenus ont révélé qu’ElyC est une protéine membranaire chez E. coli et est impliquée dans l'assemblage de l'enveloppe bactérienne, dans la chaîne de transport d'électrons et la phosphorylation oxydative. Ils ont permis aussi de confirmer l’existence d’un lien entre ElyC et le stress oxydatif. Cependant les résultats pour la détermination de la topologie restent à être clarifiés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les hydrogels de polysaccharide sont des biomatériaux utilisés comme matrices à libération contrôlée de médicaments et comme structures modèles pour l’étude de nombreux systèmes biologiques dont les biofilms bactériens et les mucus. Dans tous les cas, le transport de médicaments ou de nutriments à l’intérieur d’une matrice d’hydrogel joue un rôle de premier plan. Ainsi, l’étude des propriétés de transport dans les hydrogels s’avère un enjeu très important au niveau de plusieurs applications. Dans cet ouvrage, le curdlan, un polysaccharide neutre d’origine bactérienne et formé d’unités répétitives β-D-(1→3) glucose, est utilisé comme hydrogel modèle. Le curdlan a la propriété de former des thermogels de différentes conformations selon la température à laquelle une suspension aqueuse est incubée. La caractérisation in situ de la formation des hydrogels de curdlan thermoréversibles et thermo-irréversibles a tout d’abord été réalisée par spectroscopie infrarouge à transformée de Fourier (FT-IR) en mode réflexion totale atténuée à température variable. Les résultats ont permis d’optimiser les conditions de gélation, menant ainsi à la formation reproductible des hydrogels. Les caractérisations structurales des hydrogels hydratés, réalisées par imagerie FT-IR, par microscopie électronique à balayage en mode environnemental (eSEM) et par microscopie à force atomique (AFM), ont permis de visualiser les différentes morphologies susceptibles d’influencer la diffusion d’analytes dans les gels. Nos résultats montrent que les deux types d’hydrogels de curdlan ont des architectures distinctes à l’échelle microscopique. La combinaison de la spectroscopie de résonance magnétique nucléaire (RMN) à gradients pulsés et de l’imagerie RMN a permis d’étudier l’autodiffusion et la diffusion mutuelle sur un même système dans des conditions expérimentales similaires. Nous avons observé que la diffusion des molécules dans les gels est ralentie par rapport à celle mesurée en solution aqueuse. Les mesures d’autodiffusion, effectuées sur une série d’analytes de diverses tailles dans les deux types d’hydrogels de curdlan, montrent que le coefficient d’autodiffusion relatif décroit en fonction de la taille de l’analyte. De plus, nos résultats suggèrent que l’équivalence entre les coefficients d’autodiffusion et de diffusion mutuelle dans les hydrogels de curdlan thermo-irréversibles est principalement due au fait que l’environnement sondé par les analytes durant une expérience d’autodiffusion est représentatif de celui exploré durant une expérience de diffusion mutuelle. Dans de telles conditions, nos résultats montrent que la RMN à gradients pulsés peut s’avérer une approche très avantageuse afin de caractériser des systèmes à libération contrôlée de médicaments. D’autres expériences de diffusion mutuelle, menées sur une macromolécule de dextran, montrent un coefficient de diffusion mutuelle inférieur au coefficient d’autodiffusion sur un même gel de curdlan. L’écart mesuré entre les deux modes de transport est attribué au volume différent de l’environnement sondé durant les deux mesures. Les coefficients d’autodiffusion et de diffusion mutuelle similaires, mesurés dans les deux types de gels de curdlan pour les différents analytes étudiés, suggèrent une influence limitée de l’architecture microscopique de ces gels sur leurs propriétés de transport. Il est conclu que les interactions affectant la diffusion des analytes étudiés dans les hydrogels de curdlan se situent à l’échelle moléculaire.