2 resultados para E44

em Université de Montréal, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper extends the Competitive Storage Model by incorporating prominent features of the production process and financial markets. A major limitation of this basic model is that it cannot successfully explain the degree of serial correlation observed in actual data. The proposed extensions build on the observation that in order to generate a high degree of price persistence, a model must incorporate features such that agents are willing to hold stocks more often than predicted by the basic model. We therefore allow unique characteristics of the production and trading mechanisms to provide the required incentives. Specifically, the proposed models introduce (i) gestation lags in production with heteroskedastic supply shocks, (ii) multiperiod forward contracts, and (iii) a convenience return to inventory holding. The rational expectations solutions for twelve commodities are numerically solved. Simulations are then employed to assess the effects of the above extensions on the time series properties of commodity prices. Results indicate that each of the features above partially account for the persistence and occasional spikes observed in actual data. Evidence is presented that the precautionary demand for stocks might play a substantial role in the dynamics of commodity prices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we provide a thorough characterization of the asset returns implied by a simple general equilibrium production economy with Chew–Dekel risk preferences and convex capital adjustment costs. When households display levels of disappointment aversion consistent with the experimental evidence, a version of the model parameterized to match the volatility of output and consumption growth generates unconditional expected asset returns and price of risk in line with the historical data. For the model with Epstein–Zin preferences to generate similar statistics, the relative risk aversion coefficient needs to be about 55, two orders of magnitude higher than the available estimates. We argue that this is not surprising, given the limited risk imposed on agents by a reasonably calibrated stochastic growth model.