49 resultados para Detector simulation
em Université de Montréal, Canada
Resumo:
Les détecteurs à pixels Medipix ont été développés par la collaboration Medipix et permettent de faire de l'imagerie en temps réel. Leur surface active de près de $2\cm^2$ est divisée en 65536~pixels de $55\times 55\um^2$ chacun. Seize de ces détecteurs, les Medipix2, sont installés dans l'expérience ATLAS au CERN afin de mesurer en temps réel les champs de radiation produits par les collisions de hadrons au LHC. Ils seront prochainement remplacés par des Timepix, la plus récente version de ces détecteurs, qui permettent de mesurer directement l'énergie déposée dans chaque pixel en mode \textit{time-over-threshold} (TOT) lors du passage d'une particule dans le semi-conducteur. En vue d'améliorer l'analyse des données recueillies avec ces détecteurs Timepix dans ATLAS, un projet de simulation Geant4 a été amorcé par John Id\'{a}rraga à l'Université de Montréal. Dans le cadre de l'expérience ATLAS, cette simulation pourra être utilisée conjointement avec Athena, le programme d'analyse d'ATLAS, et la simulation complète du détecteur ATLAS. Sous l'effet de leur propre répulsion, les porteurs de charge créés dans le semi-conducteur sont diffusés vers les pixels adjacents causant un dépôt d'énergie dans plusieurs pixels sous l'effet du partage de charges. Un modèle effectif de cette diffusion latérale a été développé pour reproduire ce phénomène sans résoudre d'équation différentielle de transport de charge. Ce modèle, ainsi que le mode TOT du Timepix, qui permet de mesurer l'énergie déposée dans le détecteur, ont été inclus dans la simulation afin de reproduire adéquatement les traces laissées par les particules dans le semi-conducteur. On a d'abord étalonné le détecteur pixel par pixel à l'aide d'une source de $\Am$ et de $\Ba$. Ensuite, on a validé la simulation à l'aide de mesures d'interactions de protons et de particules $\alpha$ produits au générateur Tandem van de Graaff du Laboratoire René-J.-A.-Lévesque de l'Université de Montréal.
Resumo:
L'un des principaux défis de l'interprétation radiographique réside dans la compréhension de l’anatomie radiographique, laquelle est intrinsèquement liée à la disposition tridimensionnelle des structures anatomiques et à l’impact du positionnement du tube radiogène vis-à-vis de ces structures lors de l'acquisition de l'image. Traditionnellement, des radiographies obtenues selon des projections standard sont employées pour enseigner l'anatomie radiographique en médecine vétérinaire. La tomodensitométrie − ou communément appelée CT (Computed Tomography) − partage plusieurs des caractéristiques de la radiographie en ce qui a trait à la génération des images. À l’aide d'un plug-in spécialement développé (ORS Visual ©), la matrice contenant les images CT est déformée pour reproduire les effets géométriques propres au positionnement du tube et du détecteur vis-à-vis du patient radiographié, tout particulièrement les effets de magnification et de distorsion. Afin d'évaluer le rendu des images simulées, différentes régions corporelles ont été imagées au CT chez deux chiens, un chat et un cheval, avant d'être radiographiées suivant des protocoles d'examens standards. Pour valider le potentiel éducatif des simulations, dix radiologistes certifiés ont comparé à l'aveugle neuf séries d'images radiographiques simulées aux séries radiographiques standard. Plusieurs critères ont été évalués, soient le grade de visualisation des marqueurs anatomiques, le réalisme et la qualité radiographique des images, le positionnement du patient et le potentiel éducatif de celles-ci pour différents niveaux de formation vétérinaire. Les résultats généraux indiquent que les images radiographiques simulées à partir de ce modèle sont suffisamment représentatives de la réalité pour être employées dans l’enseignement de l’anatomie radiographique en médecine vétérinaire.
Resumo:
Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
In the context of multivariate regression (MLR) and seemingly unrelated regressions (SURE) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. in this paper, we propose finite-and large-sample likelihood-based test procedures for possibly non-linear hypotheses on the coefficients of MLR and SURE systems.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Resumo:
Rapport de recherche