8 resultados para Covariance estimate

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The attached file is created with Scientific Workplace Latex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette étude aborde le thème de l’utilisation des modèles de mélange de lois pour analyser des données de comportements et d’habiletés cognitives mesurées à plusieurs moments au cours du développement des enfants. L’estimation des mélanges de lois multinormales en utilisant l’algorithme EM est expliquée en détail. Cet algorithme simplifie beaucoup les calculs, car il permet d’estimer les paramètres de chaque groupe séparément, permettant ainsi de modéliser plus facilement la covariance des observations à travers le temps. Ce dernier point est souvent mis de côté dans les analyses de mélanges. Cette étude porte sur les conséquences d’une mauvaise spécification de la covariance sur l’estimation du nombre de groupes formant un mélange. La conséquence principale est la surestimation du nombre de groupes, c’est-à-dire qu’on estime des groupes qui n’existent pas. En particulier, l’hypothèse d’indépendance des observations à travers le temps lorsque ces dernières étaient corrélées résultait en l’estimation de plusieurs groupes qui n’existaient pas. Cette surestimation du nombre de groupes entraîne aussi une surparamétrisation, c’est-à-dire qu’on utilise plus de paramètres qu’il n’est nécessaire pour modéliser les données. Finalement, des modèles de mélanges ont été estimés sur des données de comportements et d’habiletés cognitives. Nous avons estimé les mélanges en supposant d’abord une structure de covariance puis l’indépendance. On se rend compte que dans la plupart des cas l’ajout d’une structure de covariance a pour conséquence d’estimer moins de groupes et les résultats sont plus simples et plus clairs à interpréter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depuis quelques années, l'évolution moléculaire cherche à caractériser les variations et l'intensité de la sélection grâce au rapport entre taux de substitution synonyme et taux de substitution non-synonyme (dN/dS). Cette mesure, dN/dS, a permis d'étudier l'histoire de la variation de l'intensité de la sélection au cours du temps ou de détecter des épisodes de la sélection positive. Les liens entre sélection et variation de taille efficace interfèrent cependant dans ces mesures. Les méthodes comparatives, quant a elle, permettent de mesurer les corrélations entre caractères quantitatifs le long d'une phylogénie. Elles sont également utilisées pour tester des hypothèses sur l'évolution corrélée des traits d'histoire de vie, mais pour être employées pour étudier les corrélations entre traits d'histoire de vie, masse, taux de substitution ou dN/dS. Nous proposons ici une approche combinant une méthode comparative basée sur le principe des contrastes indépendants et un modèle d'évolution moléculaire, dans un cadre probabiliste Bayésien. Intégrant, le long d'une phylogénie, sur les reconstructions ancestrales des traits et et de dN/dS nous estimons les covariances entre traits ainsi qu'entre traits et paramètres du modèle d'évolution moléculaire. Un modèle hiérarchique, a été implémenté dans le cadre du logiciel coevol, publié au cours de cette maitrise. Ce modèle permet l'analyse simultané de plusieurs gènes sans perdre la puissance donnée par l'ensemble de séquences. Un travail deparallélisation des calculs donne la liberté d'augmenter la taille du modèle jusqu'à l'échelle du génome. Nous étudions ici les placentaires, pour lesquels beaucoup de génomes complets et de mesures phénotypiques sont disponibles. À la lumière des théories sur les traits d'histoire de vie, notre méthode devrait permettre de caractériser l'implication de groupes de gènes dans les processus biologique liés aux phénotypes étudiés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of conducting inference on nonparametric high-frequency estimators without knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal under general conditions that were not previously available in the literature. We suggest a procedure for a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling method is much more robust than the plug-in method based on the asymptotic expression for the variance. Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plugin estimator substantially underestimates the sampling uncertainty. By construction, the subsampling method delivers estimates of the variance-covariance matrices that are always positive semi-definite. We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We document significant variation in betas within year 2006, and find that tick data captures more variation in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture this variation we estimate a simple dynamic model for betas. The variance estimation is also important for the correction of the errors-in-variables bias in such models. We find that the bias corrections are substantial, and that betas are more persistent than the naive estimators would lead one to believe.