8 resultados para Cost curves
em Université de Montréal, Canada
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
We reconsider the discrete version of the axiomatic cost-sharing model. We propose a condition of (informational) coherence requiring that not all informational refinements of a given problem be solved differently from the original problem. We prove that strictly coherent linear cost-sharing rules must be simple random-order rules.
Resumo:
We propose two axiomatic theories of cost sharing with the common premise that agents demand comparable -though perhaps different- commodities and are responsible for their own demand. Under partial responsibility the agents are not responsible for the asymmetries of the cost function: two agents consuming the same amount of output always pay the same price; this holds true under full responsibility only if the cost function is symmetric in all individual demands. If the cost function is additively separable, each agent pays her stand alone cost under full responsibility; this holds true under partial responsibility only if, in addition, the cost function is symmetric. By generalizing Moulin and Shenker’s (1999) Distributivity axiom to cost-sharing methods for heterogeneous goods, we identify in each of our two theories a different serial method. The subsidy-free serial method (Moulin, 1995) is essentially the only distributive method meeting Ranking and Dummy. The cross-subsidizing serial method (Sprumont, 1998) is the only distributive method satisfying Separability and Strong Ranking. Finally, we propose an alternative characterization of the latter method based on a strengthening of Distributivity.
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche
Resumo:
Rapport de recherche
Resumo:
We ask how the three known mechanisms for solving cost sharing problems with homogeneous cost functions - the value, the proportional, and the serial mechanisms - should be extended to arbitrary problem. We propose the Ordinality axiom, which requires that cost shares be invariante under all transactions preserving the nature of a cost sharing problem.