3 resultados para COARSENING PROCESSES (THEORY)
em Université de Montréal, Canada
Resumo:
Dans cette thèse, nous étudions quelques problèmes fondamentaux en mathématiques financières et actuarielles, ainsi que leurs applications. Cette thèse est constituée de trois contributions portant principalement sur la théorie de la mesure de risques, le problème de l’allocation du capital et la théorie des fluctuations. Dans le chapitre 2, nous construisons de nouvelles mesures de risque cohérentes et étudions l’allocation de capital dans le cadre de la théorie des risques collectifs. Pour ce faire, nous introduisons la famille des "mesures de risque entropique cumulatifs" (Cumulative Entropic Risk Measures). Le chapitre 3 étudie le problème du portefeuille optimal pour le Entropic Value at Risk dans le cas où les rendements sont modélisés par un processus de diffusion à sauts (Jump-Diffusion). Dans le chapitre 4, nous généralisons la notion de "statistiques naturelles de risque" (natural risk statistics) au cadre multivarié. Cette extension non-triviale produit des mesures de risque multivariées construites à partir des données financiéres et de données d’assurance. Le chapitre 5 introduit les concepts de "drawdown" et de la "vitesse d’épuisement" (speed of depletion) dans la théorie de la ruine. Nous étudions ces concepts pour des modeles de risque décrits par une famille de processus de Lévy spectrallement négatifs.
Resumo:
Les Tableaux de Bord de la Performance ont été acclamés avec raison depuis leur introduction en 1992, mais les intellectuels continuent encore à étudier leurs aspects pragmatiques. Ce papier contribue à la littérature sur les Tableaux de Bord de la Performance, tout d’abord, en offrant une explication logique quant à leur succès et ensuite, en présentant un cadre de travail contextuel de tableaux de bord de la performance pour une structure de gestion hiérarchisée. Le cadre de travail contextuel réforme la perspective d’apprentissage et de croissance du tableau de bord de la performance (i) en effectuant la transition de référence (subjective/objective), et (ii) en reconnaissant que la Perspective d’Apprentissage et de Croissance implique avant tout une incidence de formulation stratégique d’une extra-entité. Le transfert de l’incidence (intra-entité/extra-entité) réconcilie l’évolution de la position de politique de gestion non ordonnée [Contenu: (Contenu: Contexte): Contexte] qu’est la Perspective d’Apprentissage et de Croissance Concomitante. Le cadre de travail supplante également les Perspectives des Tableaux de Bord de la Performances développés par Kaplan et Norton en ajoutant la perspective de politique sociale qui manquait. La perspective manquante implique une transition de référence objective [(position endogène, perspective exogène): (position exogène, perspective exogène)]. De tels signaux de transition [Contenu: (Contenu: Contexte): Contexte] ordonnent l’évolution de la position de politique de gestion.
Resumo:
Cette thèse est principalement constituée de trois articles traitant des processus markoviens additifs, des processus de Lévy et d'applications en finance et en assurance. Le premier chapitre est une introduction aux processus markoviens additifs (PMA), et une présentation du problème de ruine et de notions fondamentales des mathématiques financières. Le deuxième chapitre est essentiellement l'article "Lévy Systems and the Time Value of Ruin for Markov Additive Processes" écrit en collaboration avec Manuel Morales et publié dans la revue European Actuarial Journal. Cet article étudie le problème de ruine pour un processus de risque markovien additif. Une identification de systèmes de Lévy est obtenue et utilisée pour donner une expression de l'espérance de la fonction de pénalité actualisée lorsque le PMA est un processus de Lévy avec changement de régimes. Celle-ci est une généralisation des résultats existant dans la littérature pour les processus de risque de Lévy et les processus de risque markoviens additifs avec sauts "phase-type". Le troisième chapitre contient l'article "On a Generalization of the Expected Discounted Penalty Function to Include Deficits at and Beyond Ruin" qui est soumis pour publication. Cet article présente une extension de l'espérance de la fonction de pénalité actualisée pour un processus subordinateur de risque perturbé par un mouvement brownien. Cette extension contient une série de fonctions escomptée éspérée des minima successives dus aux sauts du processus de risque après la ruine. Celle-ci a des applications importantes en gestion de risque et est utilisée pour déterminer la valeur espérée du capital d'injection actualisé. Finallement, le quatrième chapitre contient l'article "The Minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model" écrit en collaboration avec Romuald Hervé Momeya et publié dans la revue Asia-Pacific Financial Market. Cet article présente de nouveaux résultats en lien avec le problème de l'incomplétude dans un marché financier où le processus de prix de l'actif risqué est décrit par un modèle exponentiel markovien additif. Ces résultats consistent à charactériser la mesure martingale satisfaisant le critère de l'entropie. Cette mesure est utilisée pour calculer le prix d'une option, ainsi que des portefeuilles de couverture dans un modèle exponentiel de Lévy avec changement de régimes.