46 resultados para Aptitude Tests
em Université de Montréal, Canada
Resumo:
In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.
Resumo:
This paper proposes finite-sample procedures for testing the SURE specification in multi-equation regression models, i.e. whether the disturbances in different equations are contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible generalized least squares (FGLS). We show that the latter statistics are pivotal under the null, which provides the justification for applying MC tests. Furthermore, we extend the exact independence test proposed by Harvey and Phillips (1982) to the multi-equation framework. Specifically, we introduce several induced tests based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the associated combination problem. The properties of the proposed tests are studied in a Monte Carlo experiment which shows that standard asymptotic tests exhibit important size distortions, while MC tests achieve complete size control and display good power. Moreover, MC-QLR tests performed best in terms of power, a result of interest from the point of view of simulation-based tests. The power of the MC induced tests improves appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to analyze the macroeconomic determinants of growth.
Resumo:
Dans ce texte, nous revoyons certains développements récents de l’économétrie qui peuvent être intéressants pour des chercheurs dans des domaines autres que l’économie et nous soulignons l’éclairage particulier que l’économétrie peut jeter sur certains thèmes généraux de méthodologie et de philosophie des sciences, tels la falsifiabilité comme critère du caractère scientifique d’une théorie (Popper), la sous-détermination des théories par les données (Quine) et l’instrumentalisme. En particulier, nous soulignons le contraste entre deux styles de modélisation - l’approche parcimonieuse et l’approche statistico-descriptive - et nous discutons les liens entre la théorie des tests statistiques et la philosophie des sciences.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
Dans ce texte, nous analysons les développements récents de l’économétrie à la lumière de la théorie des tests statistiques. Nous revoyons d’abord quelques principes fondamentaux de philosophie des sciences et de théorie statistique, en mettant l’accent sur la parcimonie et la falsifiabilité comme critères d’évaluation des modèles, sur le rôle de la théorie des tests comme formalisation du principe de falsification de modèles probabilistes, ainsi que sur la justification logique des notions de base de la théorie des tests (tel le niveau d’un test). Nous montrons ensuite que certaines des méthodes statistiques et économétriques les plus utilisées sont fondamentalement inappropriées pour les problèmes et modèles considérés, tandis que de nombreuses hypothèses, pour lesquelles des procédures de test sont communément proposées, ne sont en fait pas du tout testables. De telles situations conduisent à des problèmes statistiques mal posés. Nous analysons quelques cas particuliers de tels problèmes : (1) la construction d’intervalles de confiance dans le cadre de modèles structurels qui posent des problèmes d’identification; (2) la construction de tests pour des hypothèses non paramétriques, incluant la construction de procédures robustes à l’hétéroscédasticité, à la non-normalité ou à la spécification dynamique. Nous indiquons que ces difficultés proviennent souvent de l’ambition d’affaiblir les conditions de régularité nécessaires à toute analyse statistique ainsi que d’une utilisation inappropriée de résultats de théorie distributionnelle asymptotique. Enfin, nous soulignons l’importance de formuler des hypothèses et modèles testables, et de proposer des techniques économétriques dont les propriétés sont démontrables dans les échantillons finis.
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
Ce Texte Presente Plusieurs Resultats Exacts Sur les Seconds Moments des Autocorrelations Echantillonnales, Pour des Series Gaussiennes Ou Non-Gaussiennes. Nous Donnons D'abord des Formules Generales Pour la Moyenne, la Variance et les Covariances des Autocorrelations Echantillonnales, Dans le Cas Ou les Variables de la Serie Sont Interchangeables. Nous Deduisons de Celles-Ci des Bornes Pour les Variances et les Covariances des Autocorrelations Echantillonnales. Ces Bornes Sont Utilisees Pour Obtenir des Limites Exactes Sur les Points Critiques Lorsqu'on Teste le Caractere Aleatoire D'une Serie Chronologique, Sans Qu'aucune Hypothese Soit Necessaire Sur la Forme de la Distribution Sous-Jacente. Nous Donnons des Formules Exactes et Explicites Pour les Variances et Covariances des Autocorrelations Dans le Cas Ou la Serie Est un Bruit Blanc Gaussien. Nous Montrons Que Ces Resultats Sont Aussi Valides Lorsque la Distribution de la Serie Est Spheriquement Symetrique. Nous Presentons les Resultats D'une Simulation Qui Indiquent Clairement Qu'on Approxime Beaucoup Mieux la Distribution des Autocorrelations Echantillonnales En Normalisant Celles-Ci Avec la Moyenne et la Variance Exactes et En Utilisant la Loi N(0,1) Asymptotique, Plutot Qu'en Employant les Seconds Moments Approximatifs Couramment En Usage. Nous Etudions Aussi les Variances et Covariances Exactes D'autocorrelations Basees Sur les Rangs des Observations.
Resumo:
This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).
Resumo:
In This Paper Several Additional Gmm Specification Tests Are Studied. a First Test Is a Chow-Type Test for Structural Parameter Stability of Gmm Estimates. the Test Is Inspired by the Fact That \"Taste and Technology\" Parameters Are Uncovered. the Second Set of Specification Tests Are Var Encompassing Tests. It Is Assumed That the Dgp Has a Finite Var Representation. the Moment Restrictions Which Are Suggested by Economic Theory and Exploited in the Gmm Procedure Represent One Possible Characterization of the Dgp. the Var Is a Different But Compatible Characterization of the Same Dgp. the Idea of the Var Encompassing Tests Is to Compare Parameter Estimates of the Euler Conditions and Var Representations of the Dgp Obtained Separately with Parameter Estimates of the Euler Conditions and Var Representations Obtained Jointly. There Are Several Ways to Construct Joint Systems Which Are Discussed in the Paper. Several Applications Are Also Discussed.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. The conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. The inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
In the literature on tests of normality, much concern has been expressed over the problems associated with residual-based procedures. Indeed, the specialized tables of critical points which are needed to perform the tests have been derived for the location-scale model; hence reliance on available significance points in the context of regression models may cause size distortions. We propose a general solution to the problem of controlling the size normality tests for the disturbances of standard linear regression, which is based on using the technique of Monte Carlo tests.
Resumo:
In this paper, we test a version of the conditional CAPM with respect to a local market portfolio, proxied by the Brazilian stock index during the 1976-1992 period. We also test a conditional APT model by using the difference between the 30-day rate (Cdb) and the overnight rate as a second factor in addition to the market portfolio in order to capture the large inflation risk present during this period. the conditional CAPM and APT models are estimated by the Generalized Method of Moments (GMM) and tested on a set of size portfolios created from a total of 25 securities exchanged on the Brazilian markets. the inclusion of this second factor proves to be crucial for the appropriate pricing of the portfolios.
Resumo:
We study the problem of testing the error distribution in a multivariate linear regression (MLR) model. The tests are functions of appropriately standardized multivariate least squares residuals whose distribution is invariant to the unknown cross-equation error covariance matrix. Empirical multivariate skewness and kurtosis criteria are then compared to simulation-based estimate of their expected value under the hypothesized distribution. Special cases considered include testing multivariate normal, Student t; normal mixtures and stable error models. In the Gaussian case, finite-sample versions of the standard multivariate skewness and kurtosis tests are derived. To do this, we exploit simple, double and multi-stage Monte Carlo test methods. For non-Gaussian distribution families involving nuisance parameters, confidence sets are derived for the the nuisance parameters and the error distribution. The procedures considered are evaluated in a small simulation experi-ment. Finally, the tests are applied to an asset pricing model with observable risk-free rates, using monthly returns on New York Stock Exchange (NYSE) portfolios over five-year subperiods from 1926-1995.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).