46 resultados para kernel estimators
Resumo:
La migration internationale d’étudiants est un investissement couteux pour les familles dans beaucoup de pays en voie de développement. Cependant, cet investissement est susceptible de générer des bénéfices financiers et sociaux relativement importants aux investisseurs, tout autant que des externalités pour d’autres membres de la famille. Cette thèse s’intéresse à deux aspects importants de la migration des étudiants internationaux : (i) Qui part? Quels sont les déterminants de la probabilité de migration? (ii) Qui paie? Comment la famille s’organise-t-elle pour couvrir les frais de la migration? (iii) Qui y gagne? Ce flux migratoire est-il au bénéfice du pays d’origine? Entreprendre une telle étude met le chercheur en face de défis importants, notamment, l’absence de données complètes et fiables; la dispersion géographique des étudiants migrants en étant la cause première. La première contribution importante de ce travail est le développement d’une méthode de sondage en « boule de neige » pour des populations difficiles à atteindre, ainsi que d’estimateurs corrigeant les possibles biais de sélection. A partir de cette méthodologie, j’ai collecté des données incluant simultanément des étudiants migrants et non-migrants du Cameroun en utilisant une plateforme internet. Un second défi relativement bien documenté est la présence d’endogénéité du choix d’éducation. Nous tirons avantage des récents développements théoriques dans le traitement des problèmes d’identification dans les modèles de choix discrets pour résoudre cette difficulté, tout en conservant la simplicité des hypothèses nécessaires. Ce travail constitue l’une des premières applications de cette méthodologie à des questions de développement. Le premier chapitre de la thèse étudie la décision prise par la famille d’investir dans la migration étudiante. Il propose un modèle structurel empirique de choix discret qui reflète à la fois le rendement brut de la migration et la contrainte budgétaire liée au problème de choix des agents. Nos résultats démontrent que le choix du niveau final d’éducation, les résultats académiques et l’aide de la famille sont des déterminants importants de la probabilité d’émigrer, au contraire du genre qui ne semble pas affecter très significativement la décision familiale. Le second chapitre s’efforce de comprendre comment les agents décident de leur participation à la décision de migration et comment la famille partage les profits et décourage le phénomène de « passagers clandestins ». D’autres résultats dans la littérature sur l’identification partielle nous permettent de considérer des comportements stratégiques au sein de l’unité familiale. Les premières estimations suggèrent que le modèle « unitaire », où un agent représentatif maximise l’utilité familiale ne convient qu’aux familles composées des parents et de l’enfant. Les aidants extérieurs subissent un cout strictement positif pour leur participation, ce qui décourage leur implication. Les obligations familiales et sociales semblent expliquer les cas de participation d’un aidant, mieux qu’un possible altruisme de ces derniers. Finalement, le troisième chapitre présente le cadre théorique plus général dans lequel s’imbriquent les modèles développés dans les précédents chapitres. Les méthodes d’identification et d’inférence présentées sont spécialisées aux jeux finis avec information complète. Avec mes co-auteurs, nous proposons notamment une procédure combinatoire pour une implémentation efficace du bootstrap aux fins d’inférences dans les modèles cités ci-dessus. Nous en faisons une application sur les déterminants du choix familial de soins à long terme pour des parents âgés.
Resumo:
On révise les prérequis de géométrie différentielle nécessaires à une première approche de la théorie de la quantification géométrique, c'est-à-dire des notions de base en géométrie symplectique, des notions de groupes et d'algèbres de Lie, d'action d'un groupe de Lie, de G-fibré principal, de connexion, de fibré associé et de structure presque-complexe. Ceci mène à une étude plus approfondie des fibrés en droites hermitiens, dont une condition d'existence de fibré préquantique sur une variété symplectique. Avec ces outils en main, nous commençons ensuite l'étude de la quantification géométrique, étape par étape. Nous introduisons la théorie de la préquantification, i.e. la construction des opérateurs associés à des observables classiques et la construction d'un espace de Hilbert. Des problèmes majeurs font surface lors de l'application concrète de la préquantification : les opérateurs ne sont pas ceux attendus par la première quantification et l'espace de Hilbert formé est trop gros. Une première correction, la polarisation, élimine quelques problèmes, mais limite grandement l'ensemble des observables classiques que l'on peut quantifier. Ce mémoire n'est pas un survol complet de la quantification géométrique, et cela n'est pas son but. Il ne couvre ni la correction métaplectique, ni le noyau BKS. Il est un à-côté de lecture pour ceux qui s'introduisent à la quantification géométrique. D'une part, il introduit des concepts de géométrie différentielle pris pour acquis dans (Woodhouse [21]) et (Sniatycki [18]), i.e. G-fibrés principaux et fibrés associés. Enfin, il rajoute des détails à quelques preuves rapides données dans ces deux dernières références.
Resumo:
Nous proposons une nouvelle méthode pour quantifier la vorticité intracardiaque (vortographie Doppler), basée sur l’imagerie Doppler conventionnelle. Afin de caractériser les vortex, nous utilisons un indice dénommé « Blood Vortex Signature (BVS) » (Signature Tourbillonnaire Sanguine) obtenu par l’application d’un filtre par noyau basé sur la covariance. La validation de l’indice BVS mesuré par vortographie Doppler a été réalisée à partir de champs Doppler issus de simulations et d’expériences in vitro. Des résultats préliminaires obtenus chez des sujets sains et des patients atteints de complications cardiaques sont également présentés dans ce mémoire. Des corrélations significatives ont été observées entre la vorticité estimée par vortographie Doppler et la méthode de référence (in silico: r2 = 0.98, in vitro: r2 = 0.86). Nos résultats suggèrent que la vortographie Doppler est une technique d’échographie cardiaque prometteuse pour quantifier les vortex intracardiaques. Cet outil d’évaluation pourrait être aisément appliqué en routine clinique pour détecter la présence d’une insuffisance ventriculaire et évaluer la fonction diastolique par échocardiographie Doppler.
Resumo:
Les processus Markoviens continus en temps sont largement utilisés pour tenter d’expliquer l’évolution des séquences protéiques et nucléotidiques le long des phylogénies. Des modèles probabilistes reposant sur de telles hypothèses sont conçus pour satisfaire la non-homogénéité spatiale des contraintes fonctionnelles et environnementales agissant sur celles-ci. Récemment, des modèles Markov-modulés ont été introduits pour décrire les changements temporels dans les taux d’évolution site-spécifiques (hétérotachie). Des études ont d’autre part démontré que non seulement la force mais également la nature de la contrainte sélective agissant sur un site peut varier à travers le temps. Ici nous proposons de prendre en charge cette réalité évolutive avec un modèle Markov-modulé pour les protéines sous lequel les sites sont autorisés à modifier leurs préférences en acides aminés au cours du temps. L’estimation a posteriori des différents paramètres modulants du noyau stochastique avec les méthodes de Monte Carlo est un défi de taille que nous avons su relever partiellement grâce à la programmation parallèle. Des réglages computationnels sont par ailleurs envisagés pour accélérer la convergence vers l’optimum global de ce paysage multidimensionnel relativement complexe. Qualitativement, notre modèle semble être capable de saisir des signaux d’hétérogénéité temporelle à partir d’un jeu de données dont l’histoire évolutive est reconnue pour être riche en changements de régimes substitutionnels. Des tests de performance suggèrent de plus qu’il serait mieux ajusté aux données qu’un modèle équivalent homogène en temps. Néanmoins, les histoires substitutionnelles tirées de la distribution postérieure sont bruitées et restent difficilement interprétables du point de vue biologique.
Resumo:
Cette thèse de doctorat consiste en trois chapitres qui traitent des sujets de choix de portefeuilles de grande taille, et de mesure de risque. Le premier chapitre traite du problème d’erreur d’estimation dans les portefeuilles de grande taille, et utilise le cadre d'analyse moyenne-variance. Le second chapitre explore l'importance du risque de devise pour les portefeuilles d'actifs domestiques, et étudie les liens entre la stabilité des poids de portefeuille de grande taille et le risque de devise. Pour finir, sous l'hypothèse que le preneur de décision est pessimiste, le troisième chapitre dérive la prime de risque, une mesure du pessimisme, et propose une méthodologie pour estimer les mesures dérivées. Le premier chapitre améliore le choix optimal de portefeuille dans le cadre du principe moyenne-variance de Markowitz (1952). Ceci est motivé par les résultats très décevants obtenus, lorsque la moyenne et la variance sont remplacées par leurs estimations empiriques. Ce problème est amplifié lorsque le nombre d’actifs est grand et que la matrice de covariance empirique est singulière ou presque singulière. Dans ce chapitre, nous examinons quatre techniques de régularisation pour stabiliser l’inverse de la matrice de covariance: le ridge, spectral cut-off, Landweber-Fridman et LARS Lasso. Ces méthodes font chacune intervenir un paramètre d’ajustement, qui doit être sélectionné. La contribution principale de cette partie, est de dériver une méthode basée uniquement sur les données pour sélectionner le paramètre de régularisation de manière optimale, i.e. pour minimiser la perte espérée d’utilité. Précisément, un critère de validation croisée qui prend une même forme pour les quatre méthodes de régularisation est dérivé. Les règles régularisées obtenues sont alors comparées à la règle utilisant directement les données et à la stratégie naïve 1/N, selon leur perte espérée d’utilité et leur ratio de Sharpe. Ces performances sont mesurée dans l’échantillon (in-sample) et hors-échantillon (out-of-sample) en considérant différentes tailles d’échantillon et nombre d’actifs. Des simulations et de l’illustration empirique menées, il ressort principalement que la régularisation de la matrice de covariance améliore de manière significative la règle de Markowitz basée sur les données, et donne de meilleurs résultats que le portefeuille naïf, surtout dans les cas le problème d’erreur d’estimation est très sévère. Dans le second chapitre, nous investiguons dans quelle mesure, les portefeuilles optimaux et stables d'actifs domestiques, peuvent réduire ou éliminer le risque de devise. Pour cela nous utilisons des rendements mensuelles de 48 industries américaines, au cours de la période 1976-2008. Pour résoudre les problèmes d'instabilité inhérents aux portefeuilles de grandes tailles, nous adoptons la méthode de régularisation spectral cut-off. Ceci aboutit à une famille de portefeuilles optimaux et stables, en permettant aux investisseurs de choisir différents pourcentages des composantes principales (ou dégrées de stabilité). Nos tests empiriques sont basés sur un modèle International d'évaluation d'actifs financiers (IAPM). Dans ce modèle, le risque de devise est décomposé en deux facteurs représentant les devises des pays industrialisés d'une part, et celles des pays émergents d'autres part. Nos résultats indiquent que le risque de devise est primé et varie à travers le temps pour les portefeuilles stables de risque minimum. De plus ces stratégies conduisent à une réduction significative de l'exposition au risque de change, tandis que la contribution de la prime risque de change reste en moyenne inchangée. Les poids de portefeuille optimaux sont une alternative aux poids de capitalisation boursière. Par conséquent ce chapitre complète la littérature selon laquelle la prime de risque est importante au niveau de l'industrie et au niveau national dans la plupart des pays. Dans le dernier chapitre, nous dérivons une mesure de la prime de risque pour des préférences dépendent du rang et proposons une mesure du degré de pessimisme, étant donné une fonction de distorsion. Les mesures introduites généralisent la mesure de prime de risque dérivée dans le cadre de la théorie de l'utilité espérée, qui est fréquemment violée aussi bien dans des situations expérimentales que dans des situations réelles. Dans la grande famille des préférences considérées, une attention particulière est accordée à la CVaR (valeur à risque conditionnelle). Cette dernière mesure de risque est de plus en plus utilisée pour la construction de portefeuilles et est préconisée pour compléter la VaR (valeur à risque) utilisée depuis 1996 par le comité de Bâle. De plus, nous fournissons le cadre statistique nécessaire pour faire de l’inférence sur les mesures proposées. Pour finir, les propriétés des estimateurs proposés sont évaluées à travers une étude Monte-Carlo, et une illustration empirique en utilisant les rendements journaliers du marché boursier américain sur de la période 2000-2011.
Resumo:
Les travaux portent sur l’estimation de la variance dans le cas d’une non- réponse partielle traitée par une procédure d’imputation. Traiter les valeurs imputées comme si elles avaient été observées peut mener à une sous-estimation substantielle de la variance des estimateurs ponctuels. Les estimateurs de variance usuels reposent sur la disponibilité des probabilités d’inclusion d’ordre deux, qui sont parfois difficiles (voire impossibles) à calculer. Nous proposons d’examiner les propriétés d’estimateurs de variance obtenus au moyen d’approximations des probabilités d’inclusion d’ordre deux. Ces approximations s’expriment comme une fonction des probabilités d’inclusion d’ordre un et sont généralement valides pour des plans à grande entropie. Les résultats d’une étude de simulation, évaluant les propriétés des estimateurs de variance proposés en termes de biais et d’erreur quadratique moyenne, seront présentés.
Resumo:
Ma thèse est composée de trois essais sur l'inférence par le bootstrap à la fois dans les modèles de données de panel et les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peut être faible. La théorie asymptotique n'étant pas toujours une bonne approximation de la distribution d'échantillonnage des estimateurs et statistiques de tests, je considère le bootstrap comme une alternative. Ces essais tentent d'étudier la validité asymptotique des procédures bootstrap existantes et quand invalides, proposent de nouvelles méthodes bootstrap valides. Le premier chapitre #co-écrit avec Sílvia Gonçalves# étudie la validité du bootstrap pour l'inférence dans un modèle de panel de données linéaire, dynamique et stationnaire à effets fixes. Nous considérons trois méthodes bootstrap: le recursive-design bootstrap, le fixed-design bootstrap et le pairs bootstrap. Ces méthodes sont des généralisations naturelles au contexte des panels des méthodes bootstrap considérées par Gonçalves et Kilian #2004# dans les modèles autorégressifs en séries temporelles. Nous montrons que l'estimateur MCO obtenu par le recursive-design bootstrap contient un terme intégré qui imite le biais de l'estimateur original. Ceci est en contraste avec le fixed-design bootstrap et le pairs bootstrap dont les distributions sont incorrectement centrées à zéro. Cependant, le recursive-design bootstrap et le pairs bootstrap sont asymptotiquement valides quand ils sont appliqués à l'estimateur corrigé du biais, contrairement au fixed-design bootstrap. Dans les simulations, le recursive-design bootstrap est la méthode qui produit les meilleurs résultats. Le deuxième chapitre étend les résultats du pairs bootstrap aux modèles de panel non linéaires dynamiques avec des effets fixes. Ces modèles sont souvent estimés par l'estimateur du maximum de vraisemblance #EMV# qui souffre également d'un biais. Récemment, Dhaene et Johmans #2014# ont proposé la méthode d'estimation split-jackknife. Bien que ces estimateurs ont des approximations asymptotiques normales centrées sur le vrai paramètre, de sérieuses distorsions demeurent à échantillons finis. Dhaene et Johmans #2014# ont proposé le pairs bootstrap comme alternative dans ce contexte sans aucune justification théorique. Pour combler cette lacune, je montre que cette méthode est asymptotiquement valide lorsqu'elle est utilisée pour estimer la distribution de l'estimateur split-jackknife bien qu'incapable d'estimer la distribution de l'EMV. Des simulations Monte Carlo montrent que les intervalles de confiance bootstrap basés sur l'estimateur split-jackknife aident grandement à réduire les distorsions liées à l'approximation normale en échantillons finis. En outre, j'applique cette méthode bootstrap à un modèle de participation des femmes au marché du travail pour construire des intervalles de confiance valides. Dans le dernier chapitre #co-écrit avec Wenjie Wang#, nous étudions la validité asymptotique des procédures bootstrap pour les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peu être faible. Nous montrons analytiquement qu'un bootstrap standard basé sur les résidus et le bootstrap restreint et efficace #RE# de Davidson et MacKinnon #2008, 2010, 2014# ne peuvent pas estimer la distribution limite de l'estimateur du maximum de vraisemblance à information limitée #EMVIL#. La raison principale est qu'ils ne parviennent pas à bien imiter le paramètre qui caractérise l'intensité de l'identification dans l'échantillon. Par conséquent, nous proposons une méthode bootstrap modifiée qui estime de facon convergente cette distribution limite. Nos simulations montrent que la méthode bootstrap modifiée réduit considérablement les distorsions des tests asymptotiques de type Wald #$t$# dans les échantillons finis, en particulier lorsque le degré d'endogénéité est élevé.
Resumo:
Cette thèse est organisée en trois chapitres. Les deux premiers s'intéressent à l'évaluation, par des méthodes d'estimations, de l'effet causal ou de l'effet d'un traitement, dans un environnement riche en données. Le dernier chapitre se rapporte à l'économie de l'éducation. Plus précisément dans ce chapitre j'évalue l'effet de la spécialisation au secondaire sur le choix de filière à l'université et la performance. Dans le premier chapitre, j'étudie l'estimation efficace d'un paramètre de dimension finie dans un modèle linéaire où le nombre d'instruments peut être très grand ou infini. L'utilisation d'un grand nombre de conditions de moments améliore l'efficacité asymptotique des estimateurs par variables instrumentales, mais accroit le biais. Je propose une version régularisée de l'estimateur LIML basée sur trois méthodes de régularisations différentes, Tikhonov, Landweber Fridman, et composantes principales, qui réduisent le biais. Le deuxième chapitre étend les travaux précédents, en permettant la présence d'un grand nombre d'instruments faibles. Le problème des instruments faibles est la consequence d'un très faible paramètre de concentration. Afin d'augmenter la taille du paramètre de concentration, je propose d'augmenter le nombre d'instruments. Je montre par la suite que les estimateurs 2SLS et LIML régularisés sont convergents et asymptotiquement normaux. Le troisième chapitre de cette thèse analyse l'effet de la spécialisation au secondaire sur le choix de filière à l'université. En utilisant des données américaines, j'évalue la relation entre la performance à l'université et les différents types de cours suivis pendant les études secondaires. Les résultats suggèrent que les étudiants choisissent les filières dans lesquelles ils ont acquis plus de compétences au secondaire. Cependant, on a une relation en U entre la diversification et la performance à l'université, suggérant une tension entre la spécialisation et la diversification. Le compromis sous-jacent est évalué par l'estimation d'un modèle structurel de l'acquisition du capital humain au secondaire et de choix de filière. Des analyses contrefactuelles impliquent qu'un cours de plus en matière quantitative augmente les inscriptions dans les filières scientifiques et technologiques de 4 points de pourcentage.
Resumo:
Le sujet principal de cette thèse porte sur l'étude de l'estimation de la variance d'une statistique basée sur des données d'enquête imputées via le bootstrap (ou la méthode de Cyrano). L'application d'une méthode bootstrap conçue pour des données d'enquête complètes (en absence de non-réponse) en présence de valeurs imputées et faire comme si celles-ci étaient de vraies observations peut conduire à une sous-estimation de la variance. Dans ce contexte, Shao et Sitter (1996) ont introduit une procédure bootstrap dans laquelle la variable étudiée et l'indicateur de réponse sont rééchantillonnés ensemble et les non-répondants bootstrap sont imputés de la même manière qu'est traité l'échantillon original. L'estimation bootstrap de la variance obtenue est valide lorsque la fraction de sondage est faible. Dans le chapitre 1, nous commençons par faire une revue des méthodes bootstrap existantes pour les données d'enquête (complètes et imputées) et les présentons dans un cadre unifié pour la première fois dans la littérature. Dans le chapitre 2, nous introduisons une nouvelle procédure bootstrap pour estimer la variance sous l'approche du modèle de non-réponse lorsque le mécanisme de non-réponse uniforme est présumé. En utilisant seulement les informations sur le taux de réponse, contrairement à Shao et Sitter (1996) qui nécessite l'indicateur de réponse individuelle, l'indicateur de réponse bootstrap est généré pour chaque échantillon bootstrap menant à un estimateur bootstrap de la variance valide même pour les fractions de sondage non-négligeables. Dans le chapitre 3, nous étudions les approches bootstrap par pseudo-population et nous considérons une classe plus générale de mécanismes de non-réponse. Nous développons deux procédures bootstrap par pseudo-population pour estimer la variance d'un estimateur imputé par rapport à l'approche du modèle de non-réponse et à celle du modèle d'imputation. Ces procédures sont également valides même pour des fractions de sondage non-négligeables.
Resumo:
L’objet du travail est d’étudier les prolongements de sous-copules. Un cas important de l’utilisation de tels prolongements est l’estimation non paramétrique d’une copule par le lissage d’une sous-copule (la copule empirique). Lorsque l’estimateur obtenu est une copule, cet estimateur est un prolongement de la souscopule. La thèse présente au chapitre 2 la construction et la convergence uniforme d’un estimateur bona fide d’une copule ou d’une densité de copule. Cet estimateur est un prolongement de type copule empirique basé sur le lissage par le produit tensoriel de fonctions de répartition splines. Le chapitre 3 donne la caractérisation de l’ensemble des prolongements possibles d’une sous-copule. Ce sujet a été traité par le passé; mais les constructions proposées ne s’appliquent pas à la dépendance dans des espaces très généraux. Le chapitre 4 s’attèle à résoudre le problème suivant posé par [Carley, 2002]. Il s’agit de trouver la borne supérieure des prolongements en dimension 3 d’une sous-copule de domaine fini.
Resumo:
Dans cette thèse, nous étudions les fonctions propres de l'opérateur de Laplace-Beltrami - ou simplement laplacien - sur une surface fermée, c'est-à-dire une variété riemannienne lisse, compacte et sans bord de dimension 2. Ces fonctions propres satisfont l'équation $\Delta_g \phi_\lambda + \lambda \phi_\lambda = 0$ et les valeurs propres forment une suite infinie. L'ensemble nodal d'une fonction propre du laplacien est celui de ses zéros et est d'intérêt depuis les expériences de plaques vibrantes de Chladni qui remontent au début du 19ème siècle et, plus récemment, dans le contexte de la mécanique quantique. La taille de cet ensemble nodal a été largement étudiée ces dernières années, notamment par Donnelly et Fefferman, Colding et Minicozzi, Hezari et Sogge, Mangoubi ainsi que Sogge et Zelditch. L'étude de la croissance de fonctions propres n'est pas en reste, avec entre autres les récents travaux de Donnelly et Fefferman, Sogge, Toth et Zelditch, pour ne nommer que ceux-là. Notre thèse s'inscrit dans la foulée du travail de Nazarov, Polterovich et Sodin et relie les propriétés de croissance des fonctions propres avec la taille de leur ensemble nodal dans l'asymptotique $\lambda \nearrow \infty$. Pour ce faire, nous considérons d'abord les exposants de croissance, qui mesurent la croissance locale de fonctions propres et qui sont obtenus à partir de la norme uniforme de celles-ci. Nous construisons ensuite la croissance locale moyenne d'une fonction propre en calculant la moyenne sur toute la surface de ces exposants de croissance, définis sur de petits disques de rayon comparable à la longueur d'onde. Nous montrons alors que la taille de l'ensemble nodal est contrôlée par le produit de cette croissance locale moyenne et de la fréquence $\sqrt{\lambda}$. Ce résultat permet une reformulation centrée sur les fonctions propres de la célèbre conjecture de Yau, qui prévoit que la mesure de l'ensemble nodal croît au rythme de la fréquence. Notre travail renforce également l'intuition répandue selon laquelle une fonction propre se comporte comme un polynôme de degré $\sqrt{\lambda}$. Nous généralisons ensuite nos résultats pour des exposants de croissance construits à partir de normes $L^q$. Nous sommes également amenés à étudier les fonctions appartenant au noyau d'opérateurs de Schrödinger avec petit potentiel dans le plan. Pour de telles fonctions, nous obtenons deux résultats qui relient croissance et taille de l'ensemble nodal.
Resumo:
This paper introduces a framework for analysis of cross-sectional dependence in the idiosyncratic volatilities of assets using high frequency data. We first consider the estimation of standard measures of dependence in the idiosyncratic volatilities such as covariances and correlations. Next, we study an idiosyncratic volatility factor model, in which we decompose the co-movements in idiosyncratic volatilities into two parts: those related to factors such as the market volatility, and the residual co-movements. When using high frequency data, naive estimators of all of the above measures are biased due to the estimation errors in idiosyncratic volatility. We provide bias-corrected estimators and establish their asymptotic properties. We apply our estimators to high-frequency data on 27 individual stocks from nine different sectors, and document strong cross-sectional dependence in their idiosyncratic volatilities. We also find that on average 74% of this dependence can be explained by the market volatility.
Resumo:
Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l’estimation des petits domaines et l’imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l’erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l’erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n’a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l’influence d’une unité de la population. Ces deux classes d’estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l’information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l’information disponible dans le domaine d’intérêt. Dans certaines situations, un biais non négligeable est possible pour l’estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d’influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d’erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l’estimation de l’erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c’est-à-dire, elle n’est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S’agissant de l’imputation en présence de non-réponse partielle, certaines formes d’imputation simple ont été étudiées. L’imputation par la régression déterministe entre les classes, qui inclut l’imputation par le ratio et l’imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d’imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d’imputation ou le modèle de non-réponse n’est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l’un au moins des modèles d’imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l’estimateur doublement robuste. Les résultats des études par simulations montrent que l’estimateur proposé performe bien pour un choix approprié de la constante de robustesse.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.