36 resultados para Bayes Estimator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sujet principal de cette thèse porte sur l'étude de l'estimation de la variance d'une statistique basée sur des données d'enquête imputées via le bootstrap (ou la méthode de Cyrano). L'application d'une méthode bootstrap conçue pour des données d'enquête complètes (en absence de non-réponse) en présence de valeurs imputées et faire comme si celles-ci étaient de vraies observations peut conduire à une sous-estimation de la variance. Dans ce contexte, Shao et Sitter (1996) ont introduit une procédure bootstrap dans laquelle la variable étudiée et l'indicateur de réponse sont rééchantillonnés ensemble et les non-répondants bootstrap sont imputés de la même manière qu'est traité l'échantillon original. L'estimation bootstrap de la variance obtenue est valide lorsque la fraction de sondage est faible. Dans le chapitre 1, nous commençons par faire une revue des méthodes bootstrap existantes pour les données d'enquête (complètes et imputées) et les présentons dans un cadre unifié pour la première fois dans la littérature. Dans le chapitre 2, nous introduisons une nouvelle procédure bootstrap pour estimer la variance sous l'approche du modèle de non-réponse lorsque le mécanisme de non-réponse uniforme est présumé. En utilisant seulement les informations sur le taux de réponse, contrairement à Shao et Sitter (1996) qui nécessite l'indicateur de réponse individuelle, l'indicateur de réponse bootstrap est généré pour chaque échantillon bootstrap menant à un estimateur bootstrap de la variance valide même pour les fractions de sondage non-négligeables. Dans le chapitre 3, nous étudions les approches bootstrap par pseudo-population et nous considérons une classe plus générale de mécanismes de non-réponse. Nous développons deux procédures bootstrap par pseudo-population pour estimer la variance d'un estimateur imputé par rapport à l'approche du modèle de non-réponse et à celle du modèle d'imputation. Ces procédures sont également valides même pour des fractions de sondage non-négligeables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le traitement chirurgical des anévrismes de l'aorte abdominale est de plus en plus remplacé par la réparation endovasculaire de l’anévrisme (« endovascular aneurysm repair », EVAR) en utilisant des endoprothèses (« stent-grafts », SGs). Cependant, l'efficacité de cette approche moins invasive est compromise par l'incidence de l'écoulement persistant dans l'anévrisme, appelé endofuites menant à une rupture d'anévrisme si elle n'est pas détectée. Par conséquent, une surveillance de longue durée par tomodensitométrie sur une base annuelle est nécessaire ce qui augmente le coût de la procédure EVAR, exposant le patient à un rayonnement ionisants et un agent de contraste néphrotoxique. Le mécanisme de rupture d'anévrisme secondaire à l'endofuite est lié à une pression du sac de l'anévrisme proche de la pression systémique. Il existe une relation entre la contraction ou l'expansion du sac et la pressurisation du sac. La pressurisation résiduelle de l'anévrisme aortique abdominale va induire une pulsation et une circulation sanguine à l'intérieur du sac empêchant ainsi la thrombose du sac et la guérison de l'anévrisme. L'élastographie vasculaire non-invasive (« non-invasive vascular elastography », NIVE) utilisant le « Lagrangian Speckle Model Estimator » (LSME) peut devenir une technique d'imagerie complémentaire pour le suivi des anévrismes après réparation endovasculaire. NIVE a la capacité de fournir des informations importantes sur l'organisation d'un thrombus dans le sac de l'anévrisme et sur la détection des endofuites. La caractérisation de l'organisation d'un thrombus n'a pas été possible dans une étude NIVE précédente. Une limitation de cette étude était l'absence d'examen tomodensitométrique comme étalon-or pour le diagnostic d'endofuites. Nous avons cherché à appliquer et optimiser la technique NIVE pour le suivi des anévrismes de l'aorte abdominale (AAA) après EVAR avec endoprothèse dans un modèle canin dans le but de détecter et caractériser les endofuites et l'organisation du thrombus. Des SGs ont été implantés dans un groupe de 18 chiens avec un anévrisme créé dans l'aorte abdominale. Des endofuites de type I ont été créés dans 4 anévrismes, de type II dans 13 anévrismes tandis qu’un anévrisme n’avait aucune endofuite. L'échographie Doppler (« Doppler ultrasound », DUS) et les examens NIVE ont été réalisés avant puis à 1 semaine, 1 mois, 3 mois et 6 mois après l’EVAR. Une angiographie, une tomodensitométrie et des coupes macroscopiques ont été réalisées au moment du sacrifice. Les valeurs de contrainte ont été calculées en utilisant l`algorithme LSME. Les régions d'endofuite, de thrombus frais (non organisé) et de thrombus solide (organisé) ont été identifiées et segmentées en comparant les résultats de la tomodensitométrie et de l’étude macroscopique. Les valeurs de contrainte dans les zones avec endofuite, thrombus frais et organisé ont été comparées. Les valeurs de contrainte étaient significativement différentes entre les zones d'endofuites, les zones de thrombus frais ou organisé et entre les zones de thrombus frais et organisé. Toutes les endofuites ont été clairement caractérisées par les examens d'élastographie. Aucune corrélation n'a été trouvée entre les valeurs de contrainte et le type d'endofuite, la pression de sac, la taille des endofuites et la taille de l'anévrisme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Robert Bourbeau, département de démographie (Directeur de recherche) Marianne Kempeneers, département de sociologie (Codirectrice de recherche)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse comporte trois articles dont un est publié et deux en préparation. Le sujet central de la thèse porte sur le traitement des valeurs aberrantes représentatives dans deux aspects importants des enquêtes que sont : l’estimation des petits domaines et l’imputation en présence de non-réponse partielle. En ce qui concerne les petits domaines, les estimateurs robustes dans le cadre des modèles au niveau des unités ont été étudiés. Sinha & Rao (2009) proposent une version robuste du meilleur prédicteur linéaire sans biais empirique pour la moyenne des petits domaines. Leur estimateur robuste est de type «plugin», et à la lumière des travaux de Chambers (1986), cet estimateur peut être biaisé dans certaines situations. Chambers et al. (2014) proposent un estimateur corrigé du biais. En outre, un estimateur de l’erreur quadratique moyenne a été associé à ces estimateurs ponctuels. Sinha & Rao (2009) proposent une procédure bootstrap paramétrique pour estimer l’erreur quadratique moyenne. Des méthodes analytiques sont proposées dans Chambers et al. (2014). Cependant, leur validité théorique n’a pas été établie et leurs performances empiriques ne sont pas pleinement satisfaisantes. Ici, nous examinons deux nouvelles approches pour obtenir une version robuste du meilleur prédicteur linéaire sans biais empirique : la première est fondée sur les travaux de Chambers (1986), et la deuxième est basée sur le concept de biais conditionnel comme mesure de l’influence d’une unité de la population. Ces deux classes d’estimateurs robustes des petits domaines incluent également un terme de correction pour le biais. Cependant, ils utilisent tous les deux l’information disponible dans tous les domaines contrairement à celui de Chambers et al. (2014) qui utilise uniquement l’information disponible dans le domaine d’intérêt. Dans certaines situations, un biais non négligeable est possible pour l’estimateur de Sinha & Rao (2009), alors que les estimateurs proposés exhibent un faible biais pour un choix approprié de la fonction d’influence et de la constante de robustesse. Les simulations Monte Carlo sont effectuées, et les comparaisons sont faites entre les estimateurs proposés et ceux de Sinha & Rao (2009) et de Chambers et al. (2014). Les résultats montrent que les estimateurs de Sinha & Rao (2009) et de Chambers et al. (2014) peuvent avoir un biais important, alors que les estimateurs proposés ont une meilleure performance en termes de biais et d’erreur quadratique moyenne. En outre, nous proposons une nouvelle procédure bootstrap pour l’estimation de l’erreur quadratique moyenne des estimateurs robustes des petits domaines. Contrairement aux procédures existantes, nous montrons formellement la validité asymptotique de la méthode bootstrap proposée. Par ailleurs, la méthode proposée est semi-paramétrique, c’est-à-dire, elle n’est pas assujettie à une hypothèse sur les distributions des erreurs ou des effets aléatoires. Ainsi, elle est particulièrement attrayante et plus largement applicable. Nous examinons les performances de notre procédure bootstrap avec les simulations Monte Carlo. Les résultats montrent que notre procédure performe bien et surtout performe mieux que tous les compétiteurs étudiés. Une application de la méthode proposée est illustrée en analysant les données réelles contenant des valeurs aberrantes de Battese, Harter & Fuller (1988). S’agissant de l’imputation en présence de non-réponse partielle, certaines formes d’imputation simple ont été étudiées. L’imputation par la régression déterministe entre les classes, qui inclut l’imputation par le ratio et l’imputation par la moyenne sont souvent utilisées dans les enquêtes. Ces méthodes d’imputation peuvent conduire à des estimateurs imputés biaisés si le modèle d’imputation ou le modèle de non-réponse n’est pas correctement spécifié. Des estimateurs doublement robustes ont été développés dans les années récentes. Ces estimateurs sont sans biais si l’un au moins des modèles d’imputation ou de non-réponse est bien spécifié. Cependant, en présence des valeurs aberrantes, les estimateurs imputés doublement robustes peuvent être très instables. En utilisant le concept de biais conditionnel, nous proposons une version robuste aux valeurs aberrantes de l’estimateur doublement robuste. Les résultats des études par simulations montrent que l’estimateur proposé performe bien pour un choix approprié de la constante de robustesse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider two new approaches to nonparametric estimation of the leverage effect. The first approach uses stock prices alone. The second approach uses the data on stock prices as well as a certain volatility instrument, such as the CBOE volatility index (VIX) or the Black-Scholes implied volatility. The theoretical justification for the instrument-based estimator relies on a certain invariance property, which can be exploited when high frequency data is available. The price-only estimator is more robust since it is valid under weaker assumptions. However, in the presence of a valid volatility instrument, the price-only estimator is inefficient as the instrument-based estimator has a faster rate of convergence. We consider two empirical applications, in which we study the relationship between the leverage effect and the debt-to-equity ratio, credit risk, and illiquidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of conducting inference on nonparametric high-frequency estimators without knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal under general conditions that were not previously available in the literature. We suggest a procedure for a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling method is much more robust than the plug-in method based on the asymptotic expression for the variance. Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plugin estimator substantially underestimates the sampling uncertainty. By construction, the subsampling method delivers estimates of the variance-covariance matrices that are always positive semi-definite. We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We document significant variation in betas within year 2006, and find that tick data captures more variation in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture this variation we estimate a simple dynamic model for betas. The variance estimation is also important for the correction of the errors-in-variables bias in such models. We find that the bias corrections are substantial, and that betas are more persistent than the naive estimators would lead one to believe.