43 resultados para model order estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La phylogénie moléculaire fournit un outil complémentaire aux études paléontologiques et géologiques en permettant la construction des relations phylogénétiques entre espèces ainsi que l’estimation du temps de leur divergence. Cependant lorsqu’un arbre phylogénétique est inféré, les chercheurs se focalisent surtout sur la topologie, c'est-à-dire l’ordre de branchement relatif des différents nœuds. Les longueurs des branches de cette phylogénie sont souvent considérées comme des sous-produits, des paramètres de nuisances apportant peu d’information. Elles constituent cependant l’information primaire pour réaliser des datations moléculaires. Or la saturation, la présence de substitutions multiples à une même position, est un artefact qui conduit à une sous-estimation systématique des longueurs de branche. Nous avons décidé d’estimer l‘influence de la saturation et son impact sur l’estimation de l’âge de divergence. Nous avons choisi d’étudier le génome mitochondrial des mammifères qui est supposé avoir un niveau élevé de saturation et qui est disponible pour de nombreuses espèces. De plus, les relations phylogénétiques des mammifères sont connues, ce qui nous a permis de fixer la topologie, contrôlant ainsi un des paramètres influant la longueur des branches. Nous avons utilisé principalement deux méthodes pour améliorer la détection des substitutions multiples : (i) l’augmentation du nombre d’espèces afin de briser les plus longues branches de l’arbre et (ii) des modèles d’évolution des séquences plus ou moins réalistes. Les résultats montrèrent que la sous-estimation des longueurs de branche était très importante (jusqu'à un facteur de 3) et que l’utilisation d'un grand nombre d’espèces est un facteur qui influence beaucoup plus la détection de substitutions multiples que l’amélioration des modèles d’évolutions de séquences. Cela suggère que même les modèles d’évolution les plus complexes disponibles actuellement, (exemple: modèle CAT+Covarion, qui prend en compte l’hétérogénéité des processus de substitution entre positions et des vitesses d’évolution au cours du temps) sont encore loin de capter toute la complexité des processus biologiques. Malgré l’importance de la sous-estimation des longueurs de branche, l’impact sur les datations est apparu être relativement faible, car la sous-estimation est plus ou moins homothétique. Cela est particulièrement vrai pour les modèles d’évolution. Cependant, comme les substitutions multiples sont le plus efficacement détectées en brisant les branches en fragments les plus courts possibles via l’ajout d’espèces, se pose le problème du biais dans l’échantillonnage taxonomique, biais dû à l‘extinction pendant l’histoire de la vie sur terre. Comme ce biais entraine une sous-estimation non-homothétique, nous considérons qu’il est indispensable d’améliorer les modèles d’évolution des séquences et proposons que le protocole élaboré dans ce travail permettra d’évaluer leur efficacité vis-à-vis de la saturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'un des modèles d'apprentissage non-supervisé générant le plus de recherche active est la machine de Boltzmann --- en particulier la machine de Boltzmann restreinte, ou RBM. Un aspect important de l'entraînement ainsi que l'exploitation d'un tel modèle est la prise d'échantillons. Deux développements récents, la divergence contrastive persistante rapide (FPCD) et le herding, visent à améliorer cet aspect, se concentrant principalement sur le processus d'apprentissage en tant que tel. Notamment, le herding renonce à obtenir un estimé précis des paramètres de la RBM, définissant plutôt une distribution par un système dynamique guidé par les exemples d'entraînement. Nous généralisons ces idées afin d'obtenir des algorithmes permettant d'exploiter la distribution de probabilités définie par une RBM pré-entraînée, par tirage d'échantillons qui en sont représentatifs, et ce sans que l'ensemble d'entraînement ne soit nécessaire. Nous présentons trois méthodes: la pénalisation d'échantillon (basée sur une intuition théorique) ainsi que la FPCD et le herding utilisant des statistiques constantes pour la phase positive. Ces méthodes définissent des systèmes dynamiques produisant des échantillons ayant les statistiques voulues et nous les évaluons à l'aide d'une méthode d'estimation de densité non-paramétrique. Nous montrons que ces méthodes mixent substantiellement mieux que la méthode conventionnelle, l'échantillonnage de Gibbs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On s’intéresse ici aux erreurs de modélisation liées à l’usage de modèles de flammelette sous-maille en combustion turbulente non prémélangée. Le but de cette thèse est de développer une stratégie d’estimation d’erreur a posteriori pour déterminer le meilleur modèle parmi une hiérarchie, à un coût numérique similaire à l’utilisation de ces mêmes modèles. Dans un premier temps, une stratégie faisant appel à un estimateur basé sur les résidus pondérés est développée et testée sur un système d’équations d’advection-diffusion-réaction. Dans un deuxième temps, on teste la méthodologie d’estimation d’erreur sur un autre système d’équations, où des effets d’extinction et de réallumage sont ajoutés. Lorsqu’il n’y a pas d’advection, une analyse asymptotique rigoureuse montre l’existence de plusieurs régimes de combustion déjà observés dans les simulations numériques. Nous obtenons une approximation des paramètres de réallumage et d’extinction avec la courbe en «S», un graphe de la température maximale de la flamme en fonction du nombre de Damköhler, composée de trois branches et d’une double courbure. En ajoutant des effets advectifs, on obtient également une courbe en «S» correspondant aux régimes de combustion déjà identifiés. Nous comparons les erreurs de modélisation liées aux approximations asymptotiques dans les deux régimes stables et établissons une nouvelle hiérarchie des modèles en fonction du régime de combustion. Ces erreurs sont comparées aux estimations données par la stratégie d’estimation d’erreur. Si un seul régime stable de combustion existe, l’estimateur d’erreur l’identifie correctement ; si plus d’un régime est possible, on obtient une fac˛on systématique de choisir un régime. Pour les régimes où plus d’un modèle est approprié, la hiérarchie prédite par l’estimateur est correcte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En écologie, dans le cadre par exemple d’études des services fournis par les écosystèmes, les modélisations descriptive, explicative et prédictive ont toutes trois leur place distincte. Certaines situations bien précises requièrent soit l’un soit l’autre de ces types de modélisation ; le bon choix s’impose afin de pouvoir faire du modèle un usage conforme aux objectifs de l’étude. Dans le cadre de ce travail, nous explorons dans un premier temps le pouvoir explicatif de l’arbre de régression multivariable (ARM). Cette méthode de modélisation est basée sur un algorithme récursif de bipartition et une méthode de rééchantillonage permettant l’élagage du modèle final, qui est un arbre, afin d’obtenir le modèle produisant les meilleures prédictions. Cette analyse asymétrique à deux tableaux permet l’obtention de groupes homogènes d’objets du tableau réponse, les divisions entre les groupes correspondant à des points de coupure des variables du tableau explicatif marquant les changements les plus abrupts de la réponse. Nous démontrons qu’afin de calculer le pouvoir explicatif de l’ARM, on doit définir un coefficient de détermination ajusté dans lequel les degrés de liberté du modèle sont estimés à l’aide d’un algorithme. Cette estimation du coefficient de détermination de la population est pratiquement non biaisée. Puisque l’ARM sous-tend des prémisses de discontinuité alors que l’analyse canonique de redondance (ACR) modélise des gradients linéaires continus, la comparaison de leur pouvoir explicatif respectif permet entre autres de distinguer quel type de patron la réponse suit en fonction des variables explicatives. La comparaison du pouvoir explicatif entre l’ACR et l’ARM a été motivée par l’utilisation extensive de l’ACR afin d’étudier la diversité bêta. Toujours dans une optique explicative, nous définissons une nouvelle procédure appelée l’arbre de régression multivariable en cascade (ARMC) qui permet de construire un modèle tout en imposant un ordre hiérarchique aux hypothèses à l’étude. Cette nouvelle procédure permet d’entreprendre l’étude de l’effet hiérarchisé de deux jeux de variables explicatives, principal et subordonné, puis de calculer leur pouvoir explicatif. L’interprétation du modèle final se fait comme dans une MANOVA hiérarchique. On peut trouver dans les résultats de cette analyse des informations supplémentaires quant aux liens qui existent entre la réponse et les variables explicatives, par exemple des interactions entres les deux jeux explicatifs qui n’étaient pas mises en évidence par l’analyse ARM usuelle. D’autre part, on étudie le pouvoir prédictif des modèles linéaires généralisés en modélisant la biomasse de différentes espèces d’arbre tropicaux en fonction de certaines de leurs mesures allométriques. Plus particulièrement, nous examinons la capacité des structures d’erreur gaussienne et gamma à fournir les prédictions les plus précises. Nous montrons que pour une espèce en particulier, le pouvoir prédictif d’un modèle faisant usage de la structure d’erreur gamma est supérieur. Cette étude s’insère dans un cadre pratique et se veut un exemple pour les gestionnaires voulant estimer précisément la capture du carbone par des plantations d’arbres tropicaux. Nos conclusions pourraient faire partie intégrante d’un programme de réduction des émissions de carbone par les changements d’utilisation des terres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans ce mémoire, nous étudions le problème de l'estimation de la variance pour les estimateurs par double dilatation et de calage pour l'échantillonnage à deux phases. Nous proposons d'utiliser une décomposition de la variance différente de celle habituellement utilisée dans l'échantillonnage à deux phases, ce qui mène à un estimateur de la variance simplifié. Nous étudions les conditions sous lesquelles les estimateurs simplifiés de la variance sont valides. Pour ce faire, nous considérons les cas particuliers suivants : (1) plan de Poisson à la deuxième phase, (2) plan à deux degrés, (3) plan aléatoire simple sans remise aux deux phases, (4) plan aléatoire simple sans remise à la deuxième phase. Nous montrons qu'une condition cruciale pour la validité des estimateurs simplifiés sous les plans (1) et (2) consiste à ce que la fraction de sondage utilisée pour la première phase soit négligeable (ou petite). Nous montrons sous les plans (3) et (4) que, pour certains estimateurs de calage, l'estimateur simplifié de la variance est valide lorsque la fraction de sondage à la première phase est petite en autant que la taille échantillonnale soit suffisamment grande. De plus, nous montrons que les estimateurs simplifiés de la variance peuvent être obtenus de manière alternative en utilisant l'approche renversée (Fay, 1991 et Shao et Steel, 1999). Finalement, nous effectuons des études par simulation dans le but d'appuyer les résultats théoriques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cette thèse est composée de trois articles en économie des ressources naturelles non-renouvelables. Nous considérons tour à tour les questions suivantes : le prix in-situ des ressources naturelles non-renouvelables ; le taux d’extraction optimal et le prix des res- sources non-renouvelables et durables. Dans le premier article, nous estimons le prix in-situ des ressources naturelles non-renouvelables en utilisant les données sur le coût moyen d’extraction pour obtenir une approximation du coût marginal. En utilisant la Méthode des Moments Généralisés, une dynamique du prix de marché derivée des conditions d’optimalité du modèle d’Hotelling est estimée avec des données de panel de 14 ressources naturelles non-renouvelables. Nous trouvons des résultats qui tendent à soutenir le modèle. Premièrement, le modèle d’Hotelling exhibe un bon pouvoir explicatif du prix de marché observé. Deuxièmement, bien que le prix estimé présente un changement structurel dans le temps, ceci semble n’avoir aucun impact significatif sur le pouvoir explicatif du modèle. Troisièmement, on ne peut pas rejeter l’hypothèse que le coût marginal d’extraction puisse être approximé par les données sur le coût moyen. Quatrièmement, le prix in-situ estimé en prenant en compte les changements structurels décroît ou exhibe une forme en U inversé dans le temps et semble être corrélé positivement avec le prix de marché. Cinquièmement, pour neuf des quatorze ressources, la différence entre le prix in-situ estimé avec changements structurels et celui estimé en négligeant les changements structurels est un processus de moyenne nulle. Dans le deuxième article, nous testons l’existence d’un équilibre dans lequel le taux d’extraction optimal des ressources non-renouvelables est linéaire par rapport au stock de ressource en terre. Tout d’abord, nous considérons un modèle d’Hotelling avec une fonction de demande variant dans le temps caractérisée par une élasticité prix constante et une fonction de coût d’extraction variant dans le temps caractérisée par des élasticités constantes par rapport au taux d’extraction et au stock de ressource. Ensuite, nous mon- trons qu’il existe un équilibre dans lequel le taux d’extraction optimal est proportionnel au stock de ressource si et seulement si le taux d’actualisation et les paramètres des fonctions de demande et de coût d’extraction satisfont une relation bien précise. Enfin, nous utilisons les données de panel de quatorze ressources non-renouvelables pour vérifier empiriquement cette relation. Dans le cas où les paramètres du modèle sont supposés invariants dans le temps, nous trouvons qu’on ne peut rejeter la relation que pour six des quatorze ressources. Cependant, ce résultat change lorsque nous prenons en compte le changement structurel dans le temps des prix des ressources. En fait, dans ce cas nous trouvons que la relation est rejetée pour toutes les quatorze ressources. Dans le troisième article, nous étudions l’évolution du prix d’une ressource naturelle non-renouvelable dans le cas où cette ressource est durable, c’est-à-dire qu’une fois extraite elle devient un actif productif détenu hors terre. On emprunte à la théorie de la détermination du prix des actifs pour ce faire. Le choix de portefeuille porte alors sur les actifs suivant : un stock de ressource non-renouvelable détenu en terre, qui ne procure aucun service productif ; un stock de ressource détenu hors terre, qui procure un flux de services productifs ; un stock d’un bien composite, qui peut être détenu soit sous forme de capital productif, soit sous forme d’une obligation dont le rendement est donné. Les productivités du secteur de production du bien composite et du secteur de l’extraction de la ressource évoluent de façon stochastique. On montre que la prédiction que l’on peut tirer quant au sentier de prix de la ressource diffère considérablement de celle qui découle de la règle d’Hotelling élémentaire et qu’aucune prédiction non ambiguë quant au comportement du sentier de prix ne peut être obtenue de façon analytique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depuis quelques années, l'évolution moléculaire cherche à caractériser les variations et l'intensité de la sélection grâce au rapport entre taux de substitution synonyme et taux de substitution non-synonyme (dN/dS). Cette mesure, dN/dS, a permis d'étudier l'histoire de la variation de l'intensité de la sélection au cours du temps ou de détecter des épisodes de la sélection positive. Les liens entre sélection et variation de taille efficace interfèrent cependant dans ces mesures. Les méthodes comparatives, quant a elle, permettent de mesurer les corrélations entre caractères quantitatifs le long d'une phylogénie. Elles sont également utilisées pour tester des hypothèses sur l'évolution corrélée des traits d'histoire de vie, mais pour être employées pour étudier les corrélations entre traits d'histoire de vie, masse, taux de substitution ou dN/dS. Nous proposons ici une approche combinant une méthode comparative basée sur le principe des contrastes indépendants et un modèle d'évolution moléculaire, dans un cadre probabiliste Bayésien. Intégrant, le long d'une phylogénie, sur les reconstructions ancestrales des traits et et de dN/dS nous estimons les covariances entre traits ainsi qu'entre traits et paramètres du modèle d'évolution moléculaire. Un modèle hiérarchique, a été implémenté dans le cadre du logiciel coevol, publié au cours de cette maitrise. Ce modèle permet l'analyse simultané de plusieurs gènes sans perdre la puissance donnée par l'ensemble de séquences. Un travail deparallélisation des calculs donne la liberté d'augmenter la taille du modèle jusqu'à l'échelle du génome. Nous étudions ici les placentaires, pour lesquels beaucoup de génomes complets et de mesures phénotypiques sont disponibles. À la lumière des théories sur les traits d'histoire de vie, notre méthode devrait permettre de caractériser l'implication de groupes de gènes dans les processus biologique liés aux phénotypes étudiés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les biofilms sont des communautés de microorganismes incorporés dans une matrice exo-polymérique complexe. Ils sont reconnus pour jouer un rôle important comme barrière de diffusion dans les systèmes environnementaux et la santé humaine, donnant lieu à une résistance accrue aux antibiotiques et aux désinfectants. Comme le transfert de masse dans un biofilm est principalement dû à la diffusion moléculaire, il est primordial de comprendre les principaux paramètres influençant les flux de diffusion. Dans ce travail, nous avons étudié un biofilm de Pseudomonas fluorescens et deux hydrogels modèles (agarose et alginate) pour lesquels l’autodiffusion (mouvement Brownien) et les coefficients de diffusion mutuels ont été quantifiés. La spectroscopie par corrélation de fluorescence a été utilisée pour mesurer les coefficients d'autodiffusion dans une volume confocal de ca. 1 m3 dans les gels ou les biofilms, tandis que les mesures de diffusion mutuelle ont été faites par cellule de diffusion. En outre, la voltamétrie sur microélectrode a été utilisée pour évaluer le potentiel de Donnan des gels afin de déterminer son impact sur la diffusion. Pour l'hydrogel d'agarose, les observations combinées d'une diminution du coefficient d’autodiffusion et de l’augmentation de la diffusion mutuelle pour une force ionique décroissante ont été attribuées au potentiel de Donnan du gel. Des mesures de l'effet Donnan (différence de -30 mV entre des forces ioniques de 10-4 et 10-1 M) et l'accumulation correspondante d’ions dans l'hydrogel (augmentation d’un facteur de 13 par rapport à la solution) ont indiqué que les interactions électrostatiques peuvent fortement influencer le flux de diffusion de cations, même dans un hydrogel faiblement chargé tel que l'agarose. Curieusement, pour un gel plus chargé comme l'alginate de calcium, la variation de la force ionique et du pH n'a donné lieu qu'à de légères variations de la diffusion de sondes chargées dans l'hydrogel. Ces résultats suggèrent qu’en influençant la diffusion du soluté, l'effet direct des cations sur la structure du gel (compression et/ou gonflement induits) était beaucoup plus efficace que l'effet Donnan. De même, pour un biofilm bactérien, les coefficients d'autodiffusion étaient pratiquement constants sur toute une gamme de force ionique (10-4-10-1 M), aussi bien pour des petits solutés chargés négativement ou positivement (le rapport du coefficient d’autodiffusion dans biofilm sur celui dans la solution, Db/Dw ≈ 85 %) que pour des nanoparticules (Db/Dw≈ 50 %), suggérant que l'effet d'obstruction des biofilms l’emporte sur l'effet de charge. Les résultats de cette étude ont montré que parmi les divers facteurs majeurs qui affectent la diffusion dans un biofilm environnemental oligotrophe (exclusion stérique, interactions électrostatiques et hydrophobes), les effets d'obstruction semblent être les plus importants lorsque l'on tente de comprendre la diffusion du soluté. Alors que les effets de charge ne semblaient pas être importants pour l'autodiffusion de substrats chargés dans l'hydrogel d'alginate ou dans le biofilm bactérien, ils ont joué un rôle clé dans la compréhension de la diffusion à travers l’agarose. L’ensemble de ces résultats devraient être très utiles pour l'évaluation de la biodisponibilité des contaminants traces et des nanoparticules dans l'environnement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’analyse biomécanique du mouvement humain en utilisant des systèmes optoélectroniques et des marqueurs cutanés considère les segments du corps comme des corps rigides. Cependant, le mouvement des tissus mous par rapport à l'os, c’est à dire les muscles et le tissu adipeux, provoque le déplacement des marqueurs. Ce déplacement est le fait de deux composantes, une composante propre correspondant au mouvement aléatoire de chaque marqueur et une composante à l’unisson provoquant le déplacement commun des marqueurs cutanés lié au mouvement des masses sous-jacentes. Si nombre d’études visent à minimiser ces déplacements, des simulations ont montré que le mouvement des masses molles réduit la dynamique articulaire. Cette observation est faite uniquement par la simulation, car il n'existe pas de méthodes capables de dissocier la cinématique des masses molles de celle de l’os. L’objectif principal de cette thèse consiste à développer une méthode numérique capable de distinguer ces deux cinématiques. Le premier objectif était d'évaluer une méthode d'optimisation locale pour estimer le mouvement des masses molles par rapport à l’humérus obtenu avec une tige intra-corticale vissée chez trois sujets. Les résultats montrent que l'optimisation locale sous-estime de 50% le déplacement des marqueurs et qu’elle conduit à un classement de marqueurs différents en fonction de leur déplacement. La limite de cette méthode vient du fait qu'elle ne tient pas compte de l’ensemble des composantes du mouvement des tissus mous, notamment la composante en unisson. Le second objectif était de développer une méthode numérique qui considère toutes les composantes du mouvement des tissus mous. Plus précisément, cette méthode devait fournir une cinématique similaire et une plus grande estimation du déplacement des marqueurs par rapport aux méthodes classiques et dissocier ces composantes. Le membre inférieur est modélisé avec une chaine cinématique de 10 degrés de liberté reconstruite par optimisation globale en utilisant seulement les marqueurs placés sur le pelvis et la face médiale du tibia. L’estimation de la cinématique sans considérer les marqueurs placés sur la cuisse et le mollet permet d'éviter l’influence de leur déplacement sur la reconstruction du modèle cinématique. Cette méthode testée sur 13 sujets lors de sauts a obtenu jusqu’à 2,1 fois plus de déplacement des marqueurs en fonction de la méthode considérée en assurant des cinématiques similaires. Une approche vectorielle a montré que le déplacement des marqueurs est surtout dû à la composante à l’unisson. Une approche matricielle associant l’optimisation locale à la chaine cinématique a montré que les masses molles se déplacent principalement autour de l'axe longitudinal et le long de l'axe antéro-postérieur de l'os. L'originalité de cette thèse est de dissocier numériquement la cinématique os de celle des masses molles et les composantes de ce mouvement. Les méthodes développées dans cette thèse augmentent les connaissances sur le mouvement des masses molles et permettent d’envisager l’étude de leur effet sur la dynamique articulaire.