28 resultados para Tabu search algorithms
Resumo:
Les habitudes de consommation de substances psychoactives, le stress, l’obésité et les traits cardiovasculaires associés seraient en partie reliés aux mêmes facteurs génétiques. Afin d’explorer cette hypothèse, nous avons effectué, chez 119 familles multi-générationnelles québécoises de la région du Saguenay-Lac-St-Jean, des études d’association et de liaison pangénomiques pour les composantes génétiques : de la consommation usuelle d’alcool, de tabac et de café, de la réponse au stress physique et psychologique, des traits anthropométriques reliés à l’obésité, ainsi que des mesures du rythme cardiaque (RC) et de la pression artérielle (PA). 58000 SNPs et 437 marqueurs microsatellites ont été utilisés et l’annotation fonctionnelle des gènes candidats identifiés a ensuite été réalisée. Nous avons détecté des corrélations phénotypiques significatives entre les substances psychoactives, le stress, l’obésité et les traits hémodynamiques. Par exemple, les consommateurs d’alcool et de tabac ont montré un RC significativement diminué en réponse au stress psychologique. De plus, les consommateurs de tabac avaient des PA plus basses que les non-consommateurs. Aussi, les hypertendus présentaient des RC et PA systoliques accrus en réponse au stress psychologique et un indice de masse corporelle (IMC) élevé, comparativement aux normotendus. D’autre part, l’utilisation de tabac augmenterait les taux corporels d’épinéphrine, et des niveaux élevés d’épinéphrine ont été associés à des IMC diminués. Ainsi, en accord avec les corrélations inter-phénotypiques, nous avons identifié plusieurs gènes associés/liés à la consommation de substances psychoactives, à la réponse au stress physique et psychologique, aux traits reliés à l’obésité et aux traits hémodynamiques incluant CAMK4, CNTN4, DLG2, DAG1, FHIT, GRID2, ITPR2, NOVA1, NRG3 et PRKCE. Ces gènes codent pour des protéines constituant un réseau d’interactions, impliquées dans la plasticité synaptique, et hautement exprimées dans le cerveau et ses tissus associés. De plus, l’analyse des sentiers de signalisation pour les gènes identifiés (P = 0,03) a révélé une induction de mécanismes de Potentialisation à Long Terme. Les variations des traits étudiés seraient en grande partie liées au sexe et au statut d’hypertension. Pour la consommation de tabac, nous avons noté que le degré et le sens des corrélations avec l’obésité, les traits hémodynamiques et le stress sont spécifiques au sexe et à la pression artérielle. Par exemple, si des variations ont été détectées entre les hommes fumeurs et non-fumeurs (anciens et jamais), aucune différence n’a été observée chez les femmes. Nous avons aussi identifié de nombreux traits reliés à l’obésité dont la corrélation avec la consommation de tabac apparaît essentiellement plus liée à des facteurs génétiques qu’au fait de fumer en lui-même. Pour le sexe et l’hypertension, des différences dans l’héritabilité de nombreux traits ont également été observées. En effet, des analyses génétiques sur des sous-groupes spécifiques ont révélé des gènes additionnels partageant des fonctions synaptiques : CAMK4, CNTN5, DNM3, KCNAB1 (spécifique à l’hypertension), CNTN4, DNM3, FHIT, ITPR1 and NRXN3 (spécifique au sexe). Ces gènes codent pour des protéines interagissant avec les protéines de gènes détectés dans l’analyse générale. De plus, pour les gènes des sous-groupes, les résultats des analyses des sentiers de signalisation et des profils d’expression des gènes ont montré des caractéristiques similaires à celles de l’analyse générale. La convergence substantielle entre les déterminants génétiques des substances psychoactives, du stress, de l’obésité et des traits hémodynamiques soutiennent la notion selon laquelle les variations génétiques des voies de plasticité synaptique constitueraient une interface commune avec les différences génétiques liées au sexe et à l’hypertension. Nous pensons, également, que la plasticité synaptique interviendrait dans de nombreux phénotypes complexes influencés par le mode de vie. En définitive, ces résultats indiquent que des approches basées sur des sous-groupes et des réseaux amélioreraient la compréhension de la nature polygénique des phénotypes complexes, et des processus moléculaires communs qui les définissent.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
Thèse réalisée en cotutelle avec l'Université d'Avignon.
Resumo:
Naïvement perçu, le processus d’évolution est une succession d’événements de duplication et de mutations graduelles dans le génome qui mènent à des changements dans les fonctions et les interactions du protéome. La famille des hydrolases de guanosine triphosphate (GTPases) similaire à Ras constitue un bon modèle de travail afin de comprendre ce phénomène fondamental, car cette famille de protéines contient un nombre limité d’éléments qui diffèrent en fonctionnalité et en interactions. Globalement, nous désirons comprendre comment les mutations singulières au niveau des GTPases affectent la morphologie des cellules ainsi que leur degré d’impact sur les populations asynchrones. Mon travail de maîtrise vise à classifier de manière significative différents phénotypes de la levure Saccaromyces cerevisiae via l’analyse de plusieurs critères morphologiques de souches exprimant des GTPases mutées et natives. Notre approche à base de microscopie et d’analyses bioinformatique des images DIC (microscopie d’interférence différentielle de contraste) permet de distinguer les phénotypes propres aux cellules natives et aux mutants. L’emploi de cette méthode a permis une détection automatisée et une caractérisation des phénotypes mutants associés à la sur-expression de GTPases constitutivement actives. Les mutants de GTPases constitutivement actifs Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V ont été analysés avec succès. En effet, l’implémentation de différents algorithmes de partitionnement, permet d’analyser des données qui combinent les mesures morphologiques de population native et mutantes. Nos résultats démontrent que l’algorithme Fuzzy C-Means performe un partitionnement efficace des cellules natives ou mutantes, où les différents types de cellules sont classifiés en fonction de plusieurs facteurs de formes cellulaires obtenus à partir des images DIC. Cette analyse démontre que les mutations Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V induisent respectivement des phénotypes amorphe, allongé, rond et large qui sont représentés par des vecteurs de facteurs de forme distincts. Ces distinctions sont observées avec différentes proportions (morphologie mutante / morphologie native) dans les populations de mutants. Le développement de nouvelles méthodes automatisées d’analyse morphologique des cellules natives et mutantes s’avère extrêmement utile pour l’étude de la famille des GTPases ainsi que des résidus spécifiques qui dictent leurs fonctions et réseau d’interaction. Nous pouvons maintenant envisager de produire des mutants de GTPases qui inversent leur fonction en ciblant des résidus divergents. La substitution fonctionnelle est ensuite détectée au niveau morphologique grâce à notre nouvelle stratégie quantitative. Ce type d’analyse peut également être transposé à d’autres familles de protéines et contribuer de manière significative au domaine de la biologie évolutive.
Resumo:
Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université de Technologie de Troyes
Resumo:
Contexte De nombreuses études, utilisant des indicateurs de qualité variés, ont démontré que la qualité des soins pour la dépression n’est pas optimale en première ligne. Peu de ces études ont examiné les facteurs associés à la réception d’un traitement adéquat, en particulier en tenant compte simultanément des caractéristiques individuelles et organisationnelles. L'association entre un traitement adéquat pour un épisode dépressif majeur (EDM) et une amélioration des symptômes dépressifs n'est pas bien établie dans des conditions non-expérimentales. Les objectifs de cette étude étaient de : 1) réaliser une revue systématique des indicateurs mesurant la qualité du traitement de la dépression en première ligne ; 2) estimer la proportion de patients souffrant d’EDM qui reçoivent un traitement adéquat (selon les guides de pratique clinique) en première ligne ; 3) examiner les caractéristiques individuelles et organisationnelles associées à l’adéquation du traitement pour la dépression ; 4) examiner l'association entre un traitement minimalement adéquat au cours des 12 mois précédents et l'évolution des symptômes dépressifs à 6 et 12 mois. Méthodes La littérature sur la qualité du traitement de la dépression a été examinée en utilisant un ensemble de mots-clés (« depression », « depressive disorder », « quality », « treatment », « indicator », « adequacy », « adherence », « concordance », « clinical guideline » et « guideline ») et « 360search », un moteur de recherche fédérée. Les données proviennent d'une étude de cohorte incluant 915 adultes consultant un médecin généraliste, quel que soit le motif de consultation, répondant aux critères du DSM-IV pour l’EDM dans la dernière année, nichés dans 65 cliniques de première ligne au Québec, Canada. Des analyses multiniveaux ont été réalisées. Résultats Bien que majoritairement développés à partir de guides de pratique clinique, une grande variété d'indicateurs a été observée dans la revue systématique de littérature. La plupart des études retenues ont utilisé des indicateurs de qualité rudimentaires, surtout pour la psychothérapie. Les méthodes utilisées étaient très variées, limitant la comparabilité des résultats. Toutefois, quelque soit la méthode choisie, la plupart des études ont révélé qu’une grande proportion des personnes souffrant de dépression n’ont pas reçu de traitement minimalement adéquat en première ligne. Dans notre échantillon, l’adéquation était élevée (> 75 %) pour un tiers des indicateurs de qualité mesurés, mais était faible (< 60 %) pour près de la moitié des mesures. Un peu plus de la moitié de l'échantillon (52,2 %) a reçu au moins un traitement minimalement adéquat pour la dépression. Au niveau individuel, les jeunes adultes (18-24 ans) et les personnes de plus de 65 ans avaient une probabilité moins élevée de recevoir un traitement minimalement adéquat. Cette probabilité était plus élevée pour ceux qui ont un médecin de famille, une assurance complémentaire, un trouble anxieux comorbide et une dépression plus sévère. Au niveau des cliniques, la disponibilité de la psychothérapie sur place, l'utilisation d'algorithmes de traitement, et le mode de rémunération perçu comme adéquat étaient associés à plus de traitement adéquat. Les résultats ont également montré que 1) la réception d'au moins un traitement minimalement adéquat pour la dépression était associée à une plus grande amélioration des symptômes dépressifs à 6 et à 12 mois; 2) la pharmacothérapie adéquate et la psychothérapie adéquate étaient toutes deux associées à de plus grandes améliorations dans les symptômes dépressifs, et 3) l'association entre un traitement adéquat et l'amélioration des symptômes dépressifs varie en fonction de la sévérité des symptômes au moment de l'inclusion dans la cohorte, un niveau de symptômes plus élevé étant associé à une amélioration plus importante à 6 et à 12 mois. Conclusions Nos résultats suggèrent que des interventions sont nécessaires pour améliorer la qualité du traitement de la dépression en première ligne. Ces interventions devraient cibler des populations spécifiques (les jeunes adultes et les personnes âgées), améliorer l'accessibilité à la psychothérapie et à un médecin de famille, et soutenir les médecins de première ligne dans leur pratique clinique avec des patients souffrant de dépression de différentes façons, telles que le développement des connaissances pour traiter la dépression et l'adaptation du mode de rémunération. Cette étude montre également que le traitement adéquat de la dépression en première ligne est associé à une amélioration des symptômes dépressifs dans des conditions non-expérimentales.
Resumo:
Utilisant les plus récentes données recueillies par le détecteur ATLAS lors de collisions pp à 7 et 8 TeV au LHC, cette thèse établira des contraintes sévères sur une multitude de modèles allant au-delà du modèle standard (MS) de la physique des particules. Plus particulièrement, deux types de particules hypothétiques, existant dans divers modèles théoriques et qui ne sont pas présentes dans le MS, seront étudiés et sondés. Le premier type étudié sera les quarks-vectoriels (QV) produits lors de collisions pp par l’entremise de couplages électrofaibles avec les quarks légers u et d. On recherchera ces QV lorsqu’ils se désintègrent en un boson W ou Z, et un quark léger. Des arguments théoriques établissent que sous certaines conditions raisonnables la production simple dominerait la production en paires des QV. La topologie particulière des évènements en production simple des QV permettra alors la mise en oeuvre de techniques d’optimisation efficaces pour leur extraction des bruits de fond électrofaibles. Le deuxième type de particules recherché sera celles qui se désintègrent en WZ lorsque ces bosons de jauges W, et Z se désintègrent leptoniquement. Les états finaux détectés par ATLAS seront par conséquent des évènements ayant trois leptons et de l’énergie transverse manquante. La distribution de la masse invariante de ces objets sera alors examinée pour déterminer la présence ou non de nouvelles résonances qui se manifesterait par un excès localisé. Malgré le fait qu’à première vue ces deux nouveaux types de particules n’ont que très peu en commun, ils ont en réalité tous deux un lien étroit avec la brisure de symétrie électrofaible. Dans plusieurs modèles théoriques, l’existence hypothétique des QV est proposé pour annuler les contributions du quark top aux corrections radiatives de la masse du Higgs du MS. Parallèlement, d’autres modèles prédisent quant à eux des résonances en WZ tout en suggérant que le Higgs est une particule composite, chambardant ainsi tout le sector Higgs du MS. Ainsi, les deux analyses présentées dans cette thèse ont un lien fondamental avec la nature même du Higgs, élargissant par le fait même nos connaissances sur l’origine de la masse intrinsèque des particules. En fin de compte, les deux analyses n’ont pas observé d’excès significatif dans leurs régions de signal respectives, ce qui permet d’établir des limites sur la section efficace de production en fonction de la masse des résonances.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
Le Canada accepte des demandes d’asile sur la base de l'orientation sexuelle depuis plus de 20 ans. Quoi qu’il en soit, cette recherche permet de douter du fait que les demandes sur la base de l’orientation sexuelle déposées par des femmes soient traitées de façon adéquate. Pour garantir l’accès à la protection des femmes appartenant à des minorités sexuelles, une analyse du risque de persécution fondé sur l'orientation sexuelle doit incorporer des considérations de genre ainsi que divers autres facteurs d’ordre social et culturel. À partir d’une étude de cas de demandes du statut de refugié déposées par des femmes sur la base de l’orientation sexuelle et rejetées par la Commission de l'immigration et du statut de réfugié entre 2010 et 2013, cette recherche identifie des procédés décisionnels problématiques qui font obstacle au droit d’asile de ces femmes. Les résultats de cette étude révèlent qu’une analyse intersectionnelle, laquelle prend acte des formes variées et multiples de l’oppression dans un contexte social donné, est d’importance cruciale pour une évaluation éclairée et non tronquée des risques de persécution pour les minorités sexuelles féminines. À la lumière de ces résultats, ce mémoire propose qu’une analyse intersectionnelle accompagne une nécessaire formation pour les membres de la Commission de l'immigration et du statut de réfugié du Canada sur des questions particulières à des minorités sexuelles.
Resumo:
Les décisions de localisation sont souvent soumises à des aspects dynamiques comme des changements dans la demande des clients. Pour y répondre, la solution consiste à considérer une flexibilité accrue concernant l’emplacement et la capacité des installations. Même lorsque la demande est prévisible, trouver le planning optimal pour le déploiement et l'ajustement dynamique des capacités reste un défi. Dans cette thèse, nous nous concentrons sur des problèmes de localisation avec périodes multiples, et permettant l'ajustement dynamique des capacités, en particulier ceux avec des structures de coûts complexes. Nous étudions ces problèmes sous différents points de vue de recherche opérationnelle, en présentant et en comparant plusieurs modèles de programmation linéaire en nombres entiers (PLNE), l'évaluation de leur utilisation dans la pratique et en développant des algorithmes de résolution efficaces. Cette thèse est divisée en quatre parties. Tout d’abord, nous présentons le contexte industriel à l’origine de nos travaux: une compagnie forestière qui a besoin de localiser des campements pour accueillir les travailleurs forestiers. Nous présentons un modèle PLNE permettant la construction de nouveaux campements, l’extension, le déplacement et la fermeture temporaire partielle des campements existants. Ce modèle utilise des contraintes de capacité particulières, ainsi qu’une structure de coût à économie d’échelle sur plusieurs niveaux. L'utilité du modèle est évaluée par deux études de cas. La deuxième partie introduit le problème dynamique de localisation avec des capacités modulaires généralisées. Le modèle généralise plusieurs problèmes dynamiques de localisation et fournit de meilleures bornes de la relaxation linéaire que leurs formulations spécialisées. Le modèle peut résoudre des problèmes de localisation où les coûts pour les changements de capacité sont définis pour toutes les paires de niveaux de capacité, comme c'est le cas dans le problème industriel mentionnée ci-dessus. Il est appliqué à trois cas particuliers: l'expansion et la réduction des capacités, la fermeture temporaire des installations, et la combinaison des deux. Nous démontrons des relations de dominance entre notre formulation et les modèles existants pour les cas particuliers. Des expériences de calcul sur un grand nombre d’instances générées aléatoirement jusqu’à 100 installations et 1000 clients, montrent que notre modèle peut obtenir des solutions optimales plus rapidement que les formulations spécialisées existantes. Compte tenu de la complexité des modèles précédents pour les grandes instances, la troisième partie de la thèse propose des heuristiques lagrangiennes. Basées sur les méthodes du sous-gradient et des faisceaux, elles trouvent des solutions de bonne qualité même pour les instances de grande taille comportant jusqu’à 250 installations et 1000 clients. Nous améliorons ensuite la qualité de la solution obtenue en résolvent un modèle PLNE restreint qui tire parti des informations recueillies lors de la résolution du dual lagrangien. Les résultats des calculs montrent que les heuristiques donnent rapidement des solutions de bonne qualité, même pour les instances où les solveurs génériques ne trouvent pas de solutions réalisables. Finalement, nous adaptons les heuristiques précédentes pour résoudre le problème industriel. Deux relaxations différentes sont proposées et comparées. Des extensions des concepts précédents sont présentées afin d'assurer une résolution fiable en un temps raisonnable.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.
Resumo:
Dans cette dissertation, nous présentons plusieurs techniques d’apprentissage d’espaces sémantiques pour plusieurs domaines, par exemple des mots et des images, mais aussi à l’intersection de différents domaines. Un espace de représentation est appelé sémantique si des entités jugées similaires par un être humain, ont leur similarité préservée dans cet espace. La première publication présente un enchaînement de méthodes d’apprentissage incluant plusieurs techniques d’apprentissage non supervisé qui nous a permis de remporter la compétition “Unsupervised and Transfer Learning Challenge” en 2011. Le deuxième article présente une manière d’extraire de l’information à partir d’un contexte structuré (177 détecteurs d’objets à différentes positions et échelles). On montrera que l’utilisation de la structure des données combinée à un apprentissage non supervisé permet de réduire la dimensionnalité de 97% tout en améliorant les performances de reconnaissance de scènes de +5% à +11% selon l’ensemble de données. Dans le troisième travail, on s’intéresse à la structure apprise par les réseaux de neurones profonds utilisés dans les deux précédentes publications. Plusieurs hypothèses sont présentées et testées expérimentalement montrant que l’espace appris a de meilleures propriétés de mixage (facilitant l’exploration de différentes classes durant le processus d’échantillonnage). Pour la quatrième publication, on s’intéresse à résoudre un problème d’analyse syntaxique et sémantique avec des réseaux de neurones récurrents appris sur des fenêtres de contexte de mots. Dans notre cinquième travail, nous proposons une façon d’effectuer de la recherche d’image ”augmentée” en apprenant un espace sémantique joint où une recherche d’image contenant un objet retournerait aussi des images des parties de l’objet, par exemple une recherche retournant des images de ”voiture” retournerait aussi des images de ”pare-brises”, ”coffres”, ”roues” en plus des images initiales.