24 resultados para Spiking Neural Network
Resumo:
L'ère numérique dans laquelle nous sommes entrés apporte une quantité importante de nouveaux défis à relever dans une multitude de domaines. Le traitement automatique de l'abondante information à notre disposition est l'un de ces défis, et nous allons ici nous pencher sur des méthodes et techniques adaptées au filtrage et à la recommandation à l'utilisateur d'articles adaptés à ses goûts, dans le contexte particulier et sans précédent notable du jeu vidéo multi-joueurs en ligne. Notre objectif est de prédire l'appréciation des niveaux par les joueurs. Au moyen d'algorithmes d'apprentissage machine modernes tels que les réseaux de neurones profonds avec pré-entrainement non-supervisé, que nous décrivons après une introduction aux concepts nécessaires à leur bonne compréhension, nous proposons deux architectures aux caractéristiques différentes bien que basées sur ce même concept d'apprentissage profond. La première est un réseau de neurones multi-couches pour lequel nous tentons d'expliquer les performances variables que nous rapportons sur les expériences menées pour diverses variations de profondeur, d'heuristique d'entraînement, et des méthodes de pré-entraînement non-supervisé simple, débruitant et contractant. Pour la seconde architecture, nous nous inspirons des modèles à énergie et proposons de même une explication des résultats obtenus, variables eux aussi. Enfin, nous décrivons une première tentative fructueuse d'amélioration de cette seconde architecture au moyen d'un fine-tuning supervisé succédant le pré-entrainement, puis une seconde tentative où ce fine-tuning est fait au moyen d'un critère d'entraînement semi-supervisé multi-tâches. Nos expériences montrent des performances prometteuses, notament avec l'architecture inspirée des modèles à énergie, justifiant du moins l'utilisation d'algorithmes d'apprentissage profonds pour résoudre le problème de la recommandation.
Resumo:
Les personnes ayant un trouble du spectre autistique (TSA) manifestent des particularités perceptives. En vision, des travaux influents chez les adultes ont mené à l’élaboration d’un modèle explicatif du fonctionnement perceptif autistique qui suggère que l’efficacité du traitement visuel varie en fonction de la complexité des réseaux neuronaux impliqués (Hypothèse spécifique à la complexité). Ainsi, lorsque plusieurs aires corticales sont recrutées pour traiter un stimulus complexe (e.g., modulations de texture; attributs de deuxième ordre), les adultes autistes démontrent une sensibilité diminuée. À l’inverse, lorsque le traitement repose principalement sur le cortex visuel primaire V1 (e.g., modulations locales de luminance; attributs de premier ordre), leur sensibilité est augmentée (matériel statique) ou intacte (matériel dynamique). Cette dissociation de performance est spécifique aux TSA et peut s’expliquer, entre autre, par une connectivité atypique au sein de leur cortex visuel. Les mécanismes neuronaux précis demeurent néanmoins méconnus. De plus, on ignore si cette signature perceptuelle est présente à l’enfance, information cruciale pour les théories perceptives de l’autisme. Le premier volet de cette thèse cherche à vérifier, à l’aide de la psychophysique et l’électrophysiologie, si la double dissociation de performance entre les attributs statiques de premier et deuxième ordre se retrouve également chez les enfants autistes d’âge scolaire. Le second volet vise à évaluer chez les enfants autistes l’intégrité des connexions visuelles descendantes impliquées dans le traitement des textures. À cet effet, une composante électrophysiologique reflétant principalement des processus de rétroaction corticale a été obtenue lors d’une tâche de ségrégation des textures. Les résultats comportementaux obtenus à l’étude 1 révèlent des seuils sensoriels similaires entre les enfants typiques et autistes à l’égard des stimuli définis par des variations de luminance et de texture. Quant aux données électrophysiologiques, il n’y a pas de différence de groupe en ce qui concerne le traitement cérébral associé aux stimuli définis par des variations de luminance. Cependant, contrairement aux enfants typiques, les enfants autistes ne démontrent pas une augmentation systématique d’activité cérébrale en réponse aux stimuli définis par des variations de texture pendant les fenêtres temporelles préférentiellement associées au traitement de deuxième ordre. Ces différences d’activation émergent après 200 ms et engagent les aires visuelles extrastriées des régions occipito-temporales et pariétales. Concernant la connectivité cérébrale, l’étude 2 indique que les connexions visuelles descendantes sont fortement asymétriques chez les enfants autistes, en défaveur de la région occipito-temporale droite. Ceci diffère des enfants typiques pour qui le signal électrophysiologique reflétant l’intégration visuo-corticale est similaire entre l’hémisphère gauche et droit du cerveau. En somme, en accord avec l’hypothèse spécifique à la complexité, la représentation corticale du traitement de deuxième ordre (texture) est atypiquement diminuée chez les enfants autistes, et un des mécanismes cérébraux impliqués est une altération des processus de rétroaction visuelle entre les aires visuelles de haut et bas niveau. En revanche, contrairement aux résultats obtenus chez les adultes, il n’y a aucun indice qui laisse suggérer la présence de mécanismes supérieurs pour le traitement de premier ordre (luminance) chez les enfants autistes.
Resumo:
La formation est une stratégie clé pour le développement des compétences. Les entreprises continuent à investir dans la formation et le développement, mais elles possèdent rarement des données pour évaluer les résultats de cet investissement. La plupart des entreprises utilisent le modèle Kirkpatrick/Phillips pour évaluer la formation en entreprise. Cependant, il ressort de la littérature que les entreprises ont des difficultés à utiliser ce modèle. Les principales barrières sont la difficulté d’isoler l’apprentissage comme un facteur qui a une incidence sur les résultats, l’absence d’un système d’évaluation utile avec le système de gestion de l’apprentissage (Learning Management System - LMS) et le manque de données standardisées pour pouvoir comparer différentes fonctions d’apprentissage. Dans cette thèse, nous proposons un modèle (Analyse, Modélisation, Monitoring et Optimisation - AM2O) de gestion de projets de formation en entreprise, basée sur la gestion des processus d’affaires (Business Process Management - BPM). Un tel scénario suppose que les activités de formation en entreprise doivent être considérées comme des processus d’affaires. Notre modèle est inspiré de cette méthode (BPM), à travers la définition et le suivi des indicateurs de performance pour gérer les projets de formation dans les organisations. Elle est basée sur l’analyse et la modélisation des besoins de formation pour assurer l’alignement entre les activités de formation et les objectifs d’affaires de l’entreprise. Elle permet le suivi des projets de formation ainsi que le calcul des avantages tangibles et intangibles de la formation (sans coût supplémentaire). En outre, elle permet la production d’une classification des projets de formation en fonction de critères relatifs à l’entreprise. Ainsi, avec assez de données, notre approche peut être utilisée pour optimiser le rendement de la formation par une série de simulations utilisant des algorithmes d’apprentissage machine : régression logistique, réseau de neurones, co-apprentissage. Enfin, nous avons conçu un système informatique, Enterprise TRaining programs Evaluation and Optimization System - ETREOSys, pour la gestion des programmes de formation en entreprise et l’aide à la décision. ETREOSys est une plateforme Web utilisant des services en nuage (cloud services) et les bases de données NoSQL. A travers AM2O et ETREOSys nous résolvons les principaux problèmes liés à la gestion et l’évaluation de la formation en entreprise à savoir : la difficulté d’isoler les effets de la formation dans les résultats de l’entreprise et le manque de systèmes informatiques.
Resumo:
Ce mémoire est composé de trois articles et présente les résultats de travaux de recherche effectués dans le but d'améliorer les techniques actuelles permettant d'utiliser des données associées à certaines tâches dans le but d'aider à l'entraînement de réseaux de neurones sur une tâche différente. Les deux premiers articles présentent de nouveaux ensembles de données créés pour permettre une meilleure évaluation de ce type de techniques d'apprentissage machine. Le premier article introduit une suite d'ensembles de données pour la tâche de reconnaissance automatique de chiffres écrits à la main. Ces ensembles de données ont été générés à partir d'un ensemble de données déjà existant, MNIST, auquel des nouveaux facteurs de variation ont été ajoutés. Le deuxième article introduit un ensemble de données pour la tâche de reconnaissance automatique d'expressions faciales. Cet ensemble de données est composé d'images de visages qui ont été collectées automatiquement à partir du Web et ensuite étiquetées. Le troisième et dernier article présente deux nouvelles approches, dans le contexte de l'apprentissage multi-tâches, pour tirer avantage de données pour une tâche donnée afin d'améliorer les performances d'un modèle sur une tâche différente. La première approche est une généralisation des neurones Maxout récemment proposées alors que la deuxième consiste en l'application dans un contexte supervisé d'une technique permettant d'inciter des neurones à apprendre des fonctions orthogonales, à l'origine proposée pour utilisation dans un contexte semi-supervisé.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.
Resumo:
L'objectif de cette thèse est de présenter différentes applications du programme de recherche de calcul conditionnel distribué. On espère que ces applications, ainsi que la théorie présentée ici, mènera à une solution générale du problème d'intelligence artificielle, en particulier en ce qui a trait à la nécessité d'efficience. La vision du calcul conditionnel distribué consiste à accélérer l'évaluation et l'entraînement de modèles profonds, ce qui est très différent de l'objectif usuel d'améliorer sa capacité de généralisation et d'optimisation. Le travail présenté ici a des liens étroits avec les modèles de type mélange d'experts. Dans le chapitre 2, nous présentons un nouvel algorithme d'apprentissage profond qui utilise une forme simple d'apprentissage par renforcement sur un modèle d'arbre de décisions à base de réseau de neurones. Nous démontrons la nécessité d'une contrainte d'équilibre pour maintenir la distribution d'exemples aux experts uniforme et empêcher les monopoles. Pour rendre le calcul efficient, l'entrainement et l'évaluation sont contraints à être éparse en utilisant un routeur échantillonnant des experts d'une distribution multinomiale étant donné un exemple. Dans le chapitre 3, nous présentons un nouveau modèle profond constitué d'une représentation éparse divisée en segments d'experts. Un modèle de langue à base de réseau de neurones est construit à partir des transformations éparses entre ces segments. L'opération éparse par bloc est implémentée pour utilisation sur des cartes graphiques. Sa vitesse est comparée à deux opérations denses du même calibre pour démontrer le gain réel de calcul qui peut être obtenu. Un modèle profond utilisant des opérations éparses contrôlées par un routeur distinct des experts est entraîné sur un ensemble de données d'un milliard de mots. Un nouvel algorithme de partitionnement de données est appliqué sur un ensemble de mots pour hiérarchiser la couche de sortie d'un modèle de langage, la rendant ainsi beaucoup plus efficiente. Le travail présenté dans cette thèse est au centre de la vision de calcul conditionnel distribué émis par Yoshua Bengio. Elle tente d'appliquer la recherche dans le domaine des mélanges d'experts aux modèles profonds pour améliorer leur vitesse ainsi que leur capacité d'optimisation. Nous croyons que la théorie et les expériences de cette thèse sont une étape importante sur la voie du calcul conditionnel distribué car elle cadre bien le problème, surtout en ce qui concerne la compétitivité des systèmes d'experts.
Resumo:
Thèse réalisée en collaboration avec le Département de neurosciences et pharmacologie de l'Université de Copenhague, Danemark.
Resumo:
Les algorithmes d'apprentissage profond forment un nouvel ensemble de méthodes puissantes pour l'apprentissage automatique. L'idée est de combiner des couches de facteurs latents en hierarchies. Cela requiert souvent un coût computationel plus elevé et augmente aussi le nombre de paramètres du modèle. Ainsi, l'utilisation de ces méthodes sur des problèmes à plus grande échelle demande de réduire leur coût et aussi d'améliorer leur régularisation et leur optimization. Cette thèse adresse cette question sur ces trois perspectives. Nous étudions tout d'abord le problème de réduire le coût de certains algorithmes profonds. Nous proposons deux méthodes pour entrainer des machines de Boltzmann restreintes et des auto-encodeurs débruitants sur des distributions sparses à haute dimension. Ceci est important pour l'application de ces algorithmes pour le traitement de langues naturelles. Ces deux méthodes (Dauphin et al., 2011; Dauphin and Bengio, 2013) utilisent l'échantillonage par importance pour échantilloner l'objectif de ces modèles. Nous observons que cela réduit significativement le temps d'entrainement. L'accéleration atteint 2 ordres de magnitude sur plusieurs bancs d'essai. Deuxièmement, nous introduisont un puissant régularisateur pour les méthodes profondes. Les résultats expérimentaux démontrent qu'un bon régularisateur est crucial pour obtenir de bonnes performances avec des gros réseaux (Hinton et al., 2012). Dans Rifai et al. (2011), nous proposons un nouveau régularisateur qui combine l'apprentissage non-supervisé et la propagation de tangente (Simard et al., 1992). Cette méthode exploite des principes géometriques et permit au moment de la publication d'atteindre des résultats à l'état de l'art. Finalement, nous considérons le problème d'optimiser des surfaces non-convexes à haute dimensionalité comme celle des réseaux de neurones. Tradionellement, l'abondance de minimum locaux était considéré comme la principale difficulté dans ces problèmes. Dans Dauphin et al. (2014a) nous argumentons à partir de résultats en statistique physique, de la théorie des matrices aléatoires, de la théorie des réseaux de neurones et à partir de résultats expérimentaux qu'une difficulté plus profonde provient de la prolifération de points-selle. Dans ce papier nous proposons aussi une nouvelle méthode pour l'optimisation non-convexe.
Resumo:
Dans cette dissertation, nous présentons plusieurs techniques d’apprentissage d’espaces sémantiques pour plusieurs domaines, par exemple des mots et des images, mais aussi à l’intersection de différents domaines. Un espace de représentation est appelé sémantique si des entités jugées similaires par un être humain, ont leur similarité préservée dans cet espace. La première publication présente un enchaînement de méthodes d’apprentissage incluant plusieurs techniques d’apprentissage non supervisé qui nous a permis de remporter la compétition “Unsupervised and Transfer Learning Challenge” en 2011. Le deuxième article présente une manière d’extraire de l’information à partir d’un contexte structuré (177 détecteurs d’objets à différentes positions et échelles). On montrera que l’utilisation de la structure des données combinée à un apprentissage non supervisé permet de réduire la dimensionnalité de 97% tout en améliorant les performances de reconnaissance de scènes de +5% à +11% selon l’ensemble de données. Dans le troisième travail, on s’intéresse à la structure apprise par les réseaux de neurones profonds utilisés dans les deux précédentes publications. Plusieurs hypothèses sont présentées et testées expérimentalement montrant que l’espace appris a de meilleures propriétés de mixage (facilitant l’exploration de différentes classes durant le processus d’échantillonnage). Pour la quatrième publication, on s’intéresse à résoudre un problème d’analyse syntaxique et sémantique avec des réseaux de neurones récurrents appris sur des fenêtres de contexte de mots. Dans notre cinquième travail, nous proposons une façon d’effectuer de la recherche d’image ”augmentée” en apprenant un espace sémantique joint où une recherche d’image contenant un objet retournerait aussi des images des parties de l’objet, par exemple une recherche retournant des images de ”voiture” retournerait aussi des images de ”pare-brises”, ”coffres”, ”roues” en plus des images initiales.